-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaThe Long and Winding Road (Apologies to the Beatles)
article has not abstract
Published in the journal: . PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005094
Category: Research Matters
doi: https://doi.org/10.1371/journal.ppat.1005094Summary
article has not abstract
I was an indifferent high school student at the alternative Miquon School in Philadelphia, Pennsylvania—a bit lazy, suspicious of authority, with the wrong type of friends; but with an analytical and curious mind. Although I didn’t know it at the time, these were good attributes for a future academic scientist. At Beloit College in Wisconsin, I was still a bit lazy but had great, interactive professors who stimulated me to think for myself and to realize that hard work and knowledge had their own rewards. While I found chemistry to be boring, in my junior year I started reading on my own about the cloning revolution that was occurring in the late ‘70s and got really excited about the possibilities. After graduation, I worked at the United States Patent and Trademark Office as a patent examiner for two years, but found the law and bureaucracy not to my liking and, therefore, joined a biophysics/molecular PhD program at Penn State. The only laboratory that I was interested in working in that had openings (for a largely untrained person with a weak undergraduate record) was that of Ron Porter, a new Assistant Professor who was studying homologous recombination processes in Escherichia coli. While I failed miserably in my research project for the first 18 months, I found it exciting and challenging, and I learned more in that time than in any other period of my scientific life. It was in graduate school that I began the life-long process of learning how to be a scientist. A seminar by my future postdoctoral advisor, Maggie So, on the initial description of the Neisseria gonorrhoeae pilus phase and antigenic variation system, grabbed my attention. It was so cool. After Maggie’s seminar, I asked if she had any openings for postdocs, and when she found out that my research focus was on homologous recombination, she recruited me to the Research Institute of Scripps Clinic in La Jolla, California, for postdoctoral training. There, I learned a lot from Maggie, my collaborator Fred Heffron, many other postdocs, and from the stream of senior researchers who liked to visit La Jolla in the winter. I was hired by Pat Spear at Northwestern University Medical School to start my own research program into N. gonorrhoeae pathogenesis. As a faculty member, I had to learn more about microbial pathogenesis (for research and teaching); immunology (because it’s important and interesting); how to teach effectively; how to manage a laboratory; how to mentor students, postdocs, and other faculty; and most importantly, how to communicate effectively. I have found this life as an academic researcher to be challenging and extremely fulfilling. I interact daily with a smart, dedicated cadre of younger scientists; have great colleagues; and am part of an international community of dedicated, nice people.
I have been studying the pathogenic Neisseria, N. gonorrhoeae and N. meningitidis, for over 30 years. These two pathogens—the gonococcus (Gc) or the meningococcus (Mc)—are closely related organisms that colonize distinct physiologic sites within people and cause very different diseases. Gc is the sole causative agent of gonorrhea, which is a sexually transmitted infection. Mc is one of many causative agents of meningitis, but is the main bacterium causing meningitis in teenagers and young adults. These organisms are only found within humans and have evolved from human-specific commensal bacteria. They most often colonize people without causing disease symptoms, but each has gained the ability to cause disease in otherwise healthy individuals. Gc and Mc are important examples of organisms that have crossed the line between a non–disease-causing commensal organism and a true pathogen. The bacterial factors that allow colonization are largely shared between the commensal Neisseria and the pathogens, but the pathogens have developed interactions with their host that cause damage. For Gc, it is accepted that the ability to elicit a massive inflammatory response made up primarily of neutrophils in the genital tract has allowed this organism to become a successful pathogen by, presumably, increasing transmission between hosts. This inflammatory response, unfortunately, has the ability to damage cells and tissues in the female reproductive tract. We are interested in understanding how Gc modulates neutrophils to promote pathogenesis. This involvement of neutrophil inflammation in the pathogenesis of Mc meningitis may also be important to disease, but this relationship is not as well established. Another distinguishing characteristic of Gc and Mc is their ability to undergo phase and antigenic variation of important surface structures. They each express at least three diversity generation systems to provide variant subpopulations that can be selected for by functional differences or to escape immune surveillance. Our work on the pilus system investigates how high-frequency variation occurs and how variation can alter or maintain pilus functions. Our research attempts to define specific mechanisms behind the pathogenesis of gonorrhea and meningococcal meningitis, but is not translational in the strict sense of the term. While the mechanisms we uncover could have clinical implications, we not trying to create cures or diagnostics. We are driven by the concept that we need to understand the relationship between us and the microbial world before the knowledge can be applied to improve our health and world.
Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř
Článek The Hos2 Histone Deacetylase Controls Virulence through Direct Regulation of Mating-Type GenesČlánek Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a Variety of Prion IsolatesČlánek -Associated Polyomavirus Uses a Displaced Binding Site on VP1 to Engage Sialylated GlycolipidsČlánek Parsimonious Determination of the Optimal Infectious Dose of a Pathogen for Nonhuman Primate Models
Článek vyšel v časopisePLOS Pathogens
Nejčtenější tento týden
2015 Číslo 8- Jak souvisí postcovidový syndrom s poškozením mozku?
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
-
Všechny články tohoto čísla
- The Long and Winding Road (Apologies to the Beatles)
- The Ebola Virus: From Basic Research to a Global Health Crisis
- Riding the R Train into the Cell
- The Two-Phase Emergence of Non Pandemic HIV-1 Group O in Cameroon
- Tumor Progression Locus 2 Promotes Induction of IFNλ, Interferon Stimulated Genes and Antigen-Specific CD8 T Cell Responses and Protects against Influenza Virus
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies
- E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3
- The Hos2 Histone Deacetylase Controls Virulence through Direct Regulation of Mating-Type Genes
- Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease
- Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen
- HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation
- Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a Variety of Prion Isolates
- Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion
- Inhibiting the Recruitment of PLCγ1 to Kaposi’s Sarcoma Herpesvirus K15 Protein Reduces the Invasiveness and Angiogenesis of Infected Endothelial Cells
- Goblet Cell Derived RELM-β Recruits CD4 T Cells during Infectious Colitis to Promote Protective Intestinal Epithelial Cell Proliferation
- HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses
- An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses
- Extracellular Adenosine Protects against Lung Infection by Regulating Pulmonary Neutrophil Recruitment
- : Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with
- Which Way In? The RalF Arf-GEF Orchestrates Host Cell Invasion
- Intracellular Uropathogenic . Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells
- A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane
- Supporting Role for GTPase Rab27a in Hepatitis C Virus RNA Replication through a Novel miR-122-Mediated Effect
- -Associated Polyomavirus Uses a Displaced Binding Site on VP1 to Engage Sialylated Glycolipids
- The Activation of Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b
- A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in
- Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation
- The Rsb Phosphoregulatory Network Controls Availability of the Primary Sigma Factor in and Influences the Kinetics of Growth and Development
- Inhibits Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis
- Illuminating Targets of Bacterial Secretion
- Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment
- Interdisciplinarity and Infectious Diseases: An Ebola Case Study
- Fungi That Infect Insects: Altering Host Behavior and Beyond
- Plasticity and Redundancy in Proteins Important for Invasion
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
- A Novel Virus Causes Scale Drop Disease in
- STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control
- Parsimonious Determination of the Optimal Infectious Dose of a Pathogen for Nonhuman Primate Models
- Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative
- AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity
- Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice
- Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie
- Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of . Virulence Pathways
- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors
- Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins the Activation of the MnK/eIF4E Pathway
- Nanoformulations of Rilpivirine for Topical Pericoital and Systemic Coitus-Independent Administration Efficiently Prevent HIV Transmission
- Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection
- sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic
- Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface
- Hepcidin and Host Defense against Infectious Diseases
- Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis
- Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIV Rectal Challenge
- PLOS Pathogens
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Illuminating Targets of Bacterial Secretion
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání