#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Conscientious vaccination exemptions in kindergarten to eighth-grade children across Texas schools from 2012 to 2018: A regression analysis


Autoři: Maike Morrison aff001;  Lauren A. Castro aff001;  Lauren Ancel Meyers aff001
Působiště autorů: Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America aff001;  Analytics, Intelligence, and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America aff002;  The Santa Fe Institute, Santa Fe, New Mexico, United States of America aff003
Vyšlo v časopise: Conscientious vaccination exemptions in kindergarten to eighth-grade children across Texas schools from 2012 to 2018: A regression analysis. PLoS Med 17(3): e32767. doi:10.1371/journal.pmed.1003049
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003049

Souhrn

Background

As conscientious vaccination exemption (CVE) percentages rise across the United States, so does the risk and occurrence of outbreaks of vaccine-preventable diseases such as measles. In the state of Texas, the median CVE percentage across school systems more than doubled between 2012 and 2018. During this period, the proportion of schools surpassing a CVE percentage of 3% rose from 2% to 6% for public schools, 20% to 26% for private schools, and 17% to 22% for charter schools. The aim of this study was to investigate this phenomenon at a fine scale.

Methods and findings

Here, we use beta regression models to study the socioeconomic and geographic drivers of CVE trends in Texas. Using annual counts of CVEs at the school system level from the 2012–2013 to the 2017–2018 school year, we identified county-level predictors of median CVE percentage among public, private, and charter schools, the proportion of schools below a high-risk threshold for vaccination coverage, and five-year trends in CVEs. Since the 2012–2013 school year, CVE percentages have increased in 41 out of 46 counties in the top 10 metropolitan areas of Texas. We find that 77.6% of the variation in CVE percentages across metropolitan counties is explained by median income, the proportion of the population that holds a bachelor's degree, the proportion of the population that self-reports as ethnically white, the proportion of the population that is English speaking, and the proportion of the population that is under the age of five years old. Across the 10 top metropolitan areas in Texas, counties vary considerably in the proportion of school systems reporting CVE percentages above 3%. Sixty-six percent of that variation is explained by the proportion of the population that holds a bachelor’s degree and the proportion of the population affiliated with a religious congregation. Three of the largest metropolitan areas—Austin, Dallas–Fort Worth, and Houston—are potential vaccination exemption "hotspots," with over 13% of local school systems above this risk threshold. The major limitations of this study are inconsistent school-system-level CVE reporting during the study period and a lack of geographic and socioeconomic data for individual private schools.

Conclusions

In this study, we have identified high-risk communities that are typically obscured in county-level risk assessments and found that public schools, like private schools, are exhibiting predictable increases in vaccination exemption percentages. As public health agencies confront the reemerging threat of measles and other vaccine-preventable diseases, findings such as ours can guide targeted interventions and surveillance within schools, cities, counties, and sociodemographic subgroups.

Klíčová slova:

Census – Measles – Public and occupational health – Schools – Texas – Urban areas – Vaccination and immunization – Vaccines


Zdroje

1. Ten great public health achievements–United States, 2001–2010; 2011 [cited 2019 Dec 30]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6019a5.htm.

2. Papania MJ, Wallace GS, Rota PA, Icenogle JP, Fiebelkorn AP, Armstrong GL, et al. Elimination of endemic measles, rubella, and congenital rubella syndrome from thewestern hemisphere the US experience. JAMA Pediatr. 2014;168(2):148–155. doi: 10.1001/jamapediatrics.2013.4342 24311021

3. Pottinger HL, Jacobs ET, Haenchen SD, Ernst KC. Parental attitudes and perceptions associated with childhood vaccine exemptions in high-exemption schools. PLoS ONE. 2018;13(6):1–13. doi: 10.1371/journal.pone.0198655 29902199

4. Salmon DA, Dudley MZ, Glanz JM, Omer SB. Vaccine Hesitancy: Causes, Consequences, and a Call to Action. Am J Prev Med. 2015;49(6):S391–S398. doi: 10.1016/j.amepre.2015.06.009 26337116

5. Turner R. Measles Vaccination: A Matter of Confidence and Commitment. PLoS Med. 2019;16(3):e1002770. doi: 10.1371/journal.pmed.1002770 30913211

6. Brown KF, Kroll JS, Hudson MJ, Ramsay M, Green J, Long SJ, et al. Factors underlying parental decisions about combination childhood vaccinations including MMR: A systematic review. Vaccine. 2010;28(26):4235–4248. doi: 10.1016/j.vaccine.2010.04.052 20438879

7. Smith PJ, Marcuse EK, Seward JF, Zhao Z, Orenstein WA. Children and Adolescents Unvaccinated Against Measles: Geographic Clustering, Parents' Beliefs, and Missed Opportunities. Public Health Rep. 2015;130(5):485–504. doi: 10.1177/003335491513000512 26327727

8. Ten threats to global health in 2019; 2019 [cited 2019 Dec 30]. Available from: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019.

9. Hall V, Banerjee E, Kenyon C, Strain A, Griffith J, Como-Sabetti K, et al. Measles outbreak—Minnesota April-May 2017. Morb Mortal Wkly Rep. 2017;66(27):713–717. doi: 10.15585/mmwr.mm6627a1 28704350

10. Hotez P. America and Europe's new normal: the return of vaccine-preventable diseases. Pediatr Res. 2019;85(7):912–914. doi: 10.1038/s41390-019-0354-3 30812027

11. Jansen VAA, Stollenwerk N, Jensen HJ, Ramsay ME, Edmunds WJ, Rhodes CJ. Measles outbreaks in a population with declining vaccine uptake. Science. 2003;301(5634):804. doi: 10.1126/science.1086726 12907792

12. Olive JK, Hotez PJ, Damania A, Nolan MS. The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties. PLoS Med. 2018;15(6):1–10. doi: 10.1371/journal.pmed.1002578 29894470

13. Robison SG, Liko J. The Timing of Pertussis Cases in Unvaccinated Children in an Outbreak Year: Oregon 2012. J Pediatr. 2017;183:159–163. doi: 10.1016/j.jpeds.2016.12.047 28088399

14. Zipprich J, Winter K, Hacker J, Xia D, Watt J, Harriman K. Measles outbreak—California, December 2014-February 2015; 2015. 6 [cited 2019 Oct19]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6406a5.htm.

15. State School Immunization Requirements and Vaccine Exemption Laws; 2017 [cited 2019 Dec 30]. Available from: https://www.cdc.gov/phlp/docs/school-vaccinations.pdf.

16. Blank NR, Caplan AL, Constable C. Exempting schoolchildren from immunizations: States with few barriers had highest rates of nonmedical exemptions. Health Aff. 2013;32(7):1282–1290. doi: 10.1377/hlthaff.2013.0239 23836745

17. Bradford WD, Mandich A. Some state vaccination laws contribute to greater exemption rates and disease outbreaks in the United States. Health Aff. 2015;34(8):1383–1390. doi: 10.1377/hlthaff.2014.1428 26240253

18. Sugerman DE, Barskey AE, Delea MG, Ortega-Sanchez IR, Bi D, Ralston KJ, et al. Measles Outbreak in a highly vaccinated population, San Diego, 2008: Role of the intentionally undervaccinated. Pediatrics. 2010;125(4):747–755. doi: 10.1542/peds.2009-1653 20308208

19. Clemmons NS, Wallace GS, Patel M, Gastañaduy PA. Incidence of measles in the United States, 2001–2015. JAMA. 2017;318(13):1279–1281. doi: 10.1001/jama.2017.9984 28973240

20. Phadke VK, Bednarczyk RA, Salmon DA, Omer SB. Association between vaccine refusal and vaccine-preventable diseases in the United States A review of measles and pertussis. JAMA. 2016;315(11):1149–1158. doi: 10.1001/jama.2016.1353 26978210

21. Measles; 2019 [cited 2019 Oct 19]. Available from: https://www1.nyc.gov/site/doh/health/health-topics/measles.page.

22. Measles investigation; 2019 [cited 2019 Oct 19]. Available from: https://www.clark.wa.gov/public-health/measles-investigation.

23. Plans Rubió P. Is the basic reproductive number (R0) for measles viruses observed in recent outbreaks lower than in the pre-vaccination era? Eurosurveillance. 2012;17(31):1. doi: 10.2807/ese.17.31.20233-en 22874460

24. La McNutt, Desemone C, Denicola E, El H, Nadeau JA, Bednarczyk RA, et al. Affluence as a predictor of vaccine refusal and underimmunization in California private kindergartens. Vaccine. 2016;34(14):1733–1738. doi: 10.1016/j.vaccine.2015.11.063 26679403

25. Yang YT, Delamater PL, Leslie TF, Mello MM. Sociodemographic predictors of vaccination exemptions on the basis of personal belief in California. Am J Public Health. 2016;106(1):172–177. doi: 10.2105/AJPH.2015.302926 26562114

26. Wooten KG, Luman LT, Barker LE. Socioeconomic factors and persistent racial disparities in childhood vaccination. Am J Health Behav. 2007;31(4):434–445. doi: 10.5555/ajhb.2007.31.4.434 17511578

27. Guttmann A, Manuel D, Dick PT, To T, Lam K, Stukel TA. Volume matters: physician practice characteristics and immunization coverage among young children insured through a universal health plan. Pediatrics. 2006;117(3):595–602. doi: 10.1542/peds.2004-2784 16510636

28. Birnbaum MS, Jacobs ET, Ralston-King J, Ernst KC. Correlates of high vaccination exemption rates among kindergartens. Vaccine. 2013;31(5):750–756. doi: 10.1016/j.vaccine.2012.11.092 23246263

29. Goldlust S, Lee EC, Haran M, Rohani P, Bansal S. Assessing the distribution and determinants of vaccine underutilization in the United States (preprint). bioRxiv. 2017; p. 113043. doi: 10.1101/113043

30. Richards JL, Wagenaar BH, Van Otterloo J, Gondalia R, Atwell JE, Kleinbaum DG, et al. Nonmedical exemptions to immunization requirements in California: A 16-year longitudinal analysis of trends and associated community factors. Vaccine. 2013;31(29):3009–3013. doi: 10.1016/j.vaccine.2013.04.053 23664998

31. States With Religious and Philosophical Exemptions From School Immunization Requirements; 2019 [cited 2019 Dec 30]. Available from: http://www.ncsl.org/research/health/school-immunization-exemption-state-laws.aspx.

32. The Editorial Board. Measles cases a sign that Texas is risking a public health calamity; 2019 [cited 2019 Oct 19]. Available from: https://www.houstonchronicle.com/opinion/editorials/article/Measles-cases-a-sign-that-Texas-is-risking-a-13602822.php.

33. Hotez PJ. Texas and Its Measles Epidemics. PLoS Med. 2016;13(10):1–5. doi: 10.1371/journal.pmed.1002153 27780206

34. News updates: Measles; 2019 [cited 2019 Oct 19]. Available from: https://www.dshs.texas.gov/news/updates.shtm.

35. Obtaining Exemptions to Texas School Immunization Requirements; 2019 [cited 2019 Dec 30]. Available from: https://www.dshs.texas.gov/immunize/school/exemptions.aspx.

36. Texas Education Agency. District Type, 2017–18; 2018.

37. Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3(1):129–137. doi: 10.1111/j.2041-210X.2011.00125.x

38. American FactFinder; 2019 [cited 2019 Oct 19]. Available from: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.

39. Snapshot: School district profiles; 2017 [cited 2019 Oct 19]. Available from: https://tea.texas.gov/perfreport/snapshot/index.html.

40. Statistics on Conscientious Exemptions to School Immunizations; 2019 [cited 2019 Oct 19]. Available from: https://www.dshs.texas.gov/immunize/coverage/Conscientious-Exemptions-Data.shtm.

41. Definitions of County Designations; 2015 [cited 2019 Oct 19]. Available from: https://www.dshs.state.tx.us/chs/hprc/counties.shtm.

42. U.S. Religion Census; 2010 [cited 2019 Oct 19]. Available from: http://www.usreligioncensus.org/compare.php.

43. Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw. 2010;34(2):1–24. doi: 10.18637/jss.v034.i02

44. Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods. 2006;11(1):54–71. doi: 10.1037/1082-989X.11.1.54 16594767

45. Plans-Rubió P. Evaluation of the establishment of herd immunity in the population by means of serological surveys and vaccination coverage. Hum Vaccines Immunother. 2012;8(2):174–178. doi: 10.4161/hv.18444 22426372

46. Ferrari SLP, Cribari-neto F. Beta Regression for Modelling Rates and Proportions Beta Regression for Modelling Rates and Proportions. J Appl Stat. 2004;31(7):799–815. doi: 10.1080/0266476042000214501

47. Annual Report of Immunization Status Texas Department of State Health Services Immunization Branch 2012–2013. Texas Department of State Health Services Immunization Branch; 2013 [cited 2019 Oct 19]. Available from: https://www.dshs.texas.gov/immunize/coverage/schools/.

48. John Hellerstedt C. Annual Report of Immunization Status of Students; 2017. Available from: file:///Users/debanshuroy/Downloads/11-14849 2016–17 Annual Report.pdf.

49. Snapshot 2017 District Data; 2017 [cited 2019 Oct 19]. Available from: https://rptsvr1.tea.texas.gov/perfreport/snapshot/2017/index.html.

50. TIGER/Line Shapefile, 2016, state, Texas, Current County Subdivision State-based; 2016 [cited 2019 Dec 30]. Available from: https://catalog.data.gov/dataset/tiger-line-shapefile-2016-state-texas-current-county-subdivision-state-based.

51. Ndeffo Mbah ML, Liu J, Bauch CT, Tekel YI, Medlock J, Meyers LA, et al. The impact of imitation on vaccination behavior in social contact networks. PLoS Comput Biol. 2012;8(4):e1002469. doi: 10.1371/journal.pcbi.1002469 22511859

52. Osborn C. U.S. Census: Texas again leads in population growth; 2018.

53. Ura A. Dallas-Forth Worth metro area saw biggest population growth in Texas in 2018; 2019 [cited 2019 Dec 30]. Available from: https://www.texastribune.org/2019/04/18/dallas-fort-worth-metro-area-saw-biggest-2018-texas-population-growth/.

54. Cataldi JR, Dempsey AF, Allison MA, O’Leary ST. Impact of publicly available vaccination rates on parental school and child care choice. Vaccine. 2018;36(30):4525–4531. doi: 10.1016/j.vaccine.2018.06.013 29909131

55. Blewett LA, Davidson G, Bramlett MD, Rodin H, Messonnier ML. The impact of gaps in health insurance coverage on immunization status for young children. Health Serv Res. 2008;43(5 P1):1619–1636. doi: 10.1111/j.1475-6773.2008.00864.x 18522671

56. Glasser JW, Feng Z, Omer SB, Smith PJ, Rodewald LE. The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: A modelling study. Lancet Infect Dis. 2016;16(5):599–605. doi: 10.1016/S1473-3099(16)00004-9 26852723

57. Bar-Shain DS, Stager MM, Runkle AP, Leon JB, Kaelber DC. Direct Messaging to Parents / Guardians to Improve Adolescent Immunizations. J Adolesc Heal. 2015;56(5):S21–S26. doi: 10.1016/j.jadohealth.2014.11.023 25863550

58. Texas Organization of Rural & Community. Twenty-Five Things to Know about Texas Rural Hospitals; 2018 [cited 2019 Dec 30]. Available from: https://files.constantcontact.com/1355b334201/e1694f45-7823-428f-889e-c294dc687a5a.pdf.

59. Durham DP, Casman EA. Incorporating individual health-protective decisions into disease transmission models: A mathematical framework. J R Soc Interface. 2012;9(68):562–570. doi: 10.1098/rsif.2011.0325 21775324

60. Funk S, Salathé M, Jansen VAA. Modelling the influence of human behaviour on the spread of infectious diseases: A review. J R Soc Interface. 2010;7(50):1247–1256. doi: 10.1098/rsif.2010.0142 20504800

61. Herrera JL, Meyers LA. Local risk perception enhances epidemic control. PLoS ONE. 2018;14(12):e0225576. doi: 10.1371/journal.pone.0225576 31794551

62. Nyhan B, Reifler J, Richey S, Freed GL. Effective Messages in Vaccine Promotion: A Randomized Trial. Pediatrics. 2014;133(4):e835–e842. doi: 10.1542/peds.2013-2365 24590751

63. Greenberg J, Dubé E, Driedger M. Vaccine Hesitancy: In Search of the Risk Communication Comfort Zone. PLoS Curr. 2017;9:ecurrents.outbreaks.0561a011117a1d1f9596e24949e869. doi: 10.1371/currents.outbreaks.0561a011117a1d1f9596e24949e8690b 28357154

64. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett. 2001;86(14):3200–3203. doi: 10.1103/PhysRevLett.86.3200 11290142

65. Volz EM, Miller JC, Galvani A, Ancel Meyers L, Bansal S, Grenfell B, et al. Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics. PLoS Comput Biol. 2011;7(6):e1002042. doi: 10.1371/journal.pcbi.1002042 21673864

66. Potter GE, Handcock MS, Longini IM, Elizabeth Halloran M. Estimating within-school contact networks to understand influenza transmission. Ann Appl Stat. 2012;6(1):1–26. doi: 10.1214/11-AOAS505 22639701

67. Delamater PL, Leslie TF, Yang YT, Jacobsen KH. An approach for estimating vaccination coverage for communities using school-level data and population mobility information. Appl Geogr. 2016;71:123–132. doi: 10.1016/j.apgeog.2016.04.008 31327881

68. Buttenheim AM, Sethuraman K, Omer SB, Hanlon AL, Levy MZ, Salmon D. MMR vaccination status of children exempted from school-entry immunization mandates. Vaccine. 2015;33(46):6250–6256. doi: 10.1016/j.vaccine.2015.09.075 26431991

69. Salmon DA, Moulton LH, Omer SB, DeHart MP, Stokley S, Halsey NA. Factors Associated With Refusal of Childhood Vaccines Among Parents of School-aged Children: A Case-Control Study. Arch Pediatr Adolesc Med. 2005;159(5):470–476. doi: 10.1001/archpedi.159.5.470 15867122

70. Ortega-Sanchez IR, Vijayaraghavan M, Barskey AE, Wallace GS. The economic burden of sixteen measles outbreaks on United States public health departments in 2011. Vaccine. 2014;32(11):1311–1317. doi: 10.1016/j.vaccine.2013.10.012 24135574


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#