-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaRisk of disease and willingness to vaccinate in the United States: A population-based survey
Autoři: Bert Baumgaertner aff001; Benjamin J. Ridenhour aff002; Florian Justwan aff001; Juliet E. Carlisle aff003; Craig R. Miller aff004
Působiště autorů: Department of Politics and Philosophy, University of Idaho, Moscow, Idaho, United States of America aff001; Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America aff002; Department of Political Science, The University of Utah, Salt Lake City, Utah, United States of America aff003; Department of Biology, University of Idaho, Moscow, Idaho, United States of America aff004
Vyšlo v časopise: Risk of disease and willingness to vaccinate in the United States: A population-based survey. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003354
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003354Souhrn
Background
Vaccination complacency occurs when perceived risks of vaccine-preventable diseases are sufficiently low so that vaccination is no longer perceived as a necessary precaution. Disease outbreaks can once again increase perceptions of risk, thereby decrease vaccine complacency, and in turn decrease vaccine hesitancy. It is not well understood, however, how change in perceived risk translates into change in vaccine hesitancy.
We advance the concept of vaccine propensity, which relates a change in willingness to vaccinate with a change in perceived risk of infection—holding fixed other considerations such as vaccine confidence and convenience.
Methods and findings
We used an original survey instrument that presents 7 vaccine-preventable “new” diseases to gather demographically diverse sample data from the United States in 2018 (N = 2,411). Our survey was conducted online between January 25, 2018, and February 2, 2018, and was structured in 3 parts. First, we collected information concerning the places participants live and visit in a typical week. Second, participants were presented with one of 7 hypothetical disease outbreaks and asked how they would respond. Third, we collected sociodemographic information. The survey was designed to match population parameters in the US on 5 major dimensions: age, sex, income, race, and census region. We also were able to closely match education. The aggregate demographic details for study participants were a mean age of 43.80 years, 47% male and 53% female, 38.5% with a college degree, and 24% nonwhite. We found an overall change of at least 30% in proportion willing to vaccinate as risk of infection increases. When considering morbidity information, the proportion willing to vaccinate went from 0.476 (0.449–0.503) at 0 local cases of disease to 0.871 (0.852–0.888) at 100 local cases (upper and lower 95% confidence intervals). When considering mortality information, the proportion went from 0.526 (0.494–0.557) at 0 local cases of disease to 0.916 (0.897–0.931) at 100 local cases. In addition, we ffound that the risk of mortality invokes a larger proportion willing to vaccinate than mere morbidity (P = 0.0002), that older populations are more willing than younger (P<0.0001), that the highest income bracket (>$90,000) is more willing than all others (P = 0.0001), that men are more willing than women (P = 0.0011), and that the proportion willing to vaccinate is related to both ideology and the level of risk (P = 0.004). Limitations of this study include that it does not consider how other factors (such as social influence) interact with local case counts in people’s vaccine decision-making, it cannot determine whether different degrees of severity in morbidity or mortality failed to be statistically significant because of survey design or because participants use heuristically driven decision-making that glosses over degrees, and the study does not capture the part of the US that is not online.
Conclusions
In this study, we found that different degrees of risk (in terms of local cases of disease) correspond with different proportions of populations willing to vaccinate. We also identified several sociodemographic aspects of vaccine propensity.
Understanding how vaccine propensity is affected by sociodemographic factors is invaluable for predicting where outbreaks are more likely to occur and their expected size, even with the resulting cascade of changing vaccination rates and the respective feedback on potential outbreaks.
Klíčová slova:
Epidemiology – Medical risk factors – Morbidity – Religion – Schools – Surveys – Vaccination and immunization – Vaccines
Zdroje
1. Larson HJ, Jarrett C, Eckersberger E, Smith DM, Paterson P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007–2012. Vaccine. 2014;32(19):2150–2159. doi: 10.1016/j.vaccine.2014.01.081 24598724
2. MacDonald N, the SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015;33(34):4161–4164. doi: 10.1016/j.vaccine.2015.04.036 25896383
3. Wadman M, You J. The vaccine wars. Science. 2017;356(6336):364–365. doi: 10.1126/science.356.6336.364 28450592
4. Olive JK, Hotez PJ, Damania A, Nolan MS. The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties. PLoS Med. 2018;15(6):1–10. doi: 10.1371/journal.pmed.1002578 29894470
5. Dales L, Kizer KW, Rutherford G, Pertowski C, Waterman S, Woodford G. Measles epidemic from failure to immunize. Western Journal of Medicine. 1993;159(4):455–464. 8273330
6. Wu S, Yang P, Li H, Ma C, Zhang Y, Wang Q. Influenza vaccination coverage rates among adults before and after the 2009 influenza pandemic and the reasons for non-vaccination in Beijing, China: A cross-sectional study. BMC Public Health. 2013;13(1):636.
7. Poland GA. The 2009–2010 influenza pandemic: effects on pandemic and seasonal vaccine uptake and lessons learned for seasonal vaccination campaigns. Vaccine. 2010;28:D3–D13. doi: 10.1016/j.vaccine.2010.08.024 20713258
8. Borse RH, Shrestha SS, Fiore AE, Atkins CY, Singleton JA, Furlow C, et al. Effects of vaccine program against pandemic influenza A(H1N1) virus, United States, 2009–2010. Emerging Infectious Diseases. 2013;19(3):1–10.
9. Jena AB, Khullar D. To Increase Vaccination Rates, Share Information on Disease Outbreaks; 2017. Available from: https://hbr.org/2017/02/to-increase-vaccination-rates-share-information-on-disease-outbreaks. [cited 2017 May 5].
10. SteelFisher GK, Blendon RJ, Bekheit MM, Lubell K. The Public's Response to the 2009 H1N1 Influenza Pandemic. New England Journal of Medicine. 2010;362(22):e65. doi: 10.1056/NEJMp1005102 20484390
11. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychology. 2007;Mar;26(2):136–45 doi: 10.1037/0278-6133.26.2.136 17385964
12. Justwan F, Baumgaertner B, Carlisle JE, Carson E, Kizer J. The effect of trust and proximity on vaccine propensity PLoS ONE. 2019; 14(8): e0220658 doi: 10.1371/journal.pone.0220658 31461443
13. Vandermeulen C, Roelants M, Theeten H, Van Damme P, Hoppenbrouwers K. Vaccination coverage and sociodemographic determinants of measles–mumps–rubella vaccination in three different age groups. European Journal of Pediatrics. 2008;167(10):1161. doi: 10.1007/s00431-007-0652-3 18204860
14. Ru-Chien CHI, Neuzil KM. The Association of Sociodemographic Factors and Patient Attitudes on Influenza Vaccination Rates in Older Persons. The American Journal of the Medical Sciences. 2004;327(3):113–117. doi: 10.1097/00000441-200403000-00001 15090748
15. Waldhoer T, Haidinger G, Vutuc C, Haschke F, Plank R. The impact of sociodemographic variables on immunization coverage of children. European Journal of Epidemiology. 1997;13(2):145–149. doi: 10.1023/a:1007359632218 9084996
16. Yang YT, Delamater PL, Leslie TF, Mello MM. Sociodemographic predictors of vaccination exemptions on the basis of personal belief in California. American Journal of Public Health. 2016;106(1):172–177. doi: 10.2105/AJPH.2015.302926 26562114
17. Lieu TA, Ray GT, Klein NP, Chung C, Kulldorff M. Geographic clusters in underimmunization and vaccine refusal. Pediatrics. 2015;135(2):280–289. doi: 10.1542/peds.2014-2715 25601971
18. Hotez PJ. Texas and Its Measles Epidemics. PLoS Med. 2016;13(10):e1002153. doi: 10.1371/journal.pmed.1002153 27780206
19. THHS. Texas Health and Human Resources; 05/2017. http://www.dshs.texas.gov/immunize/coverage/conscientious-exemptions-data.shtm. [cited 2017 May 5].
20. Omer SB, Salmon DA, Orenstein WA, Dehart MP, Halsey N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. New England Journal of Medicine. 2009;360(19):1981–1988. doi: 10.1056/NEJMsa0806477 19420367
21. Omer SB, Enger KS, Moulton LH, Halsey NA, Stokley S, Salmon DA. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. American Journal of Epidemiology. 2008;168(12):1389–1396. doi: 10.1093/aje/kwn263 18922998
22. Liu F, Enanoria WT, Zipprich J, Blumberg S, Harriman K, Ackley SF, et al. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. BMC public health. 2015;15(1):447.
23. Glasser JW, Feng Z, Omer SB, Smith PJ, Rodewald LE. The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study. The Lancet Infectious Diseases. 2016;16(5):599–605. doi: 10.1016/S1473-3099(16)00004-9 26852723
24. Salathé M, Bonhoeffer S. The effect of opinion clustering on disease outbreaks. Journal of The Royal Society Interface. 2008;5(29):1505–1508.
25. McBryde ES. Network structure can play a role in vaccination thresholds and herd immunity: a simulation using a network mathematical model. Clinical Infectious Diseases. 2009;48(5):685–686. doi: 10.1086/597012 19191659
26. Goldstein S, MacDonald NE, Guirguis S, et al. Health communication and vaccine hesitancy. Vaccine. 2015;33(34):4212–4214. doi: 10.1016/j.vaccine.2015.04.042 25896382
27. R Core Team. R: A Language and Environment for Statistical Computing; 2018. https://www.R-project.org/.
28. Albert SM, Duffy J. Differences in risk aversion between young and older adults. Neuroscience and neuroeconomics. 2012;2012(1).
29. Mata R, Josef AK, Samanez-Larkin GR, Hertwig R. Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences. 2011;1235(1):18–29.
30. Borghans L, Heckman JJ, Golsteyn BH, Meijers H. Gender differences in risk aversion and ambiguity aversion. Journal of the European Economic Association. 2009;7(2–3):649–658.
31. Flanagan KL, Fink AL, Plebanski M, Klein SL. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annual review of cell and developmental biology. 2017;33 : 577–599. doi: 10.1146/annurev-cellbio-100616-060718 28992436
32. Sakai Y. The Vaccination Kuznets Curve: Do vaccination rates rise and fall with income? Journal of Health Economics. 2018;57 : 195–205. doi: 10.1016/j.jhealeco.2017.12.002 29277000
33. Reich JA. Neoliberal Mothering and Vaccine Refusal: Imagined Gated Communities and the Privilege of Choice. Gender & Society. 2014;28(5):679–704. doi: 10.1177/0891243214532711
34. Baumgaertner B, Carlisle JE, Justwan F. The influence of political ideology and trust on willingness to vaccinate. PLoS ONE. 2018;13(1):1–13. doi: 10.1371/journal.pone.0191728 29370265
35. Taber CS, Lodge M. Motivated skepticism in the evaluation of political beliefs. American Journal of Political Science. 2006;50(3):755–769.
36. Ferguson N. Capturing human behaviour. Nature. 2007;446 : 733 EP–.
37. Funk S, Salathé M, Jansen VAA. Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of The Royal Society Interface. 2010;7(50):1247–1256. doi: 10.1098/rsif.2010.0142 20504800
38. Manfredi P, D'Onofrio A. Modeling the interplay between human behavior and the spread of infectious diseases. Springer Science & Business Media; 2013.
39. Funk S, Bansal S, Bauch CT, Eames KT, Edmunds WJ, Galvani AP, et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. 2015;10 : 21–25. doi: 10.1016/j.epidem.2014.09.005 25843377
40. Nardin LG, Miller CR, Ridenhour BJ, Krone SM, Joyce P, Baumgaertner BO. Planning horizon affects prophylactic decision-making and epidemic dynamics. PeerJ. 2016;4:e2678. doi: 10.7717/peerj.2678 27843714
41. Efron B Regression and ANOVA with zero-one data: Measures of residual variation. Journal of the American Statistical Association. 1978;73 : 113–121.
Článek vyšel v časopisePLOS Medicine
Nejčtenější tento týden
2020 Číslo 10- Nakupování jako nemoc. Jaké jsou její příčiny a možnosti terapie?
- Eutanazie na žádost pacientů s demencí? Odborná polemika je stále živá
- Co nabízí horská medicína pro výzkum i klinickou praxi?
- „Jednohubky“ z klinického výzkumu – 2026/1
- 4× stručně a aktuálně k možnostem preventivních strategií – „jednohubky“ z klinického výzkumu 2026/2
-
Všechny články tohoto čísla
- The impact of continuous quality improvement on coverage of antenatal HIV care tests in rural South Africa: Results of a stepped-wedge cluster-randomised controlled implementation trial
- Universal third-trimester ultrasonic screening using fetal macrosomia in the prediction of adverse perinatal outcome: A systematic review and meta-analysis of diagnostic test accuracy
- The potential health impact of restricting less-healthy food and beverage advertising on UK television between 05.30 and 21.00 hours: A modelling study
- Health outcomes and cost-effectiveness of diversion programs for low-level drug offenders: A model-based analysis
- Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study
- Time trends and prescribing patterns of opioid drugs in UK primary care patients with non-cancer pain: A retrospective cohort study
- Evaluation of a pharmacist-led actionable audit and feedback intervention for improving medication safety in UK primary care: An interrupted time series analysis
- Genetics of height and risk of atrial fibrillation: A Mendelian randomization study
- Neurodevelopmental multimorbidity and educational outcomes of Scottish schoolchildren: A population-based record linkage cohort study
- Predictive value of pulse oximetry for mortality in infants and children presenting to primary care with clinical pneumonia in rural Malawi: A data linkage study
- Tuberculosis, human rights, and law reform: Addressing the lack of progress in the global tuberculosis response
- Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults: A case-control test-negative design study
- Midwifery continuity of care versus standard maternity care for women at increased risk of preterm birth: A hybrid implementation–effectiveness, randomised controlled pilot trial in the UK
- Risk of disease and willingness to vaccinate in the United States: A population-based survey
- Seroprevalence of SARS-CoV-2 antibodies in people with an acute loss in their sense of smell and/or taste in a community-based population in London, UK: An observational cohort study
- The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis
- Association between prehospital time and outcome of trauma patients in 4 Asian countries: A cross-national, multicenter cohort study
- Pulmonary vascular dysfunction among people aged over 65 years in the community in the Atherosclerosis Risk In Communities (ARIC) Study: A cross-sectional analysis
- Circulating tumour DNA in metastatic breast cancer to guide clinical trial enrolment and precision oncology: A cohort study
- Impact of providing free HIV self-testing kits on frequency of testing among men who have sex with men and their sexual partners in China: A randomized controlled trial
- Trends in prevalence of acute stroke impairments: A population-based cohort study using the South London Stroke Register
- Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE Program: A retrospective cohort analysis
- Socioeconomic level and associations between heat exposure and all-cause and cause-specific hospitalization in 1,814 Brazilian cities: A nationwide case-crossover study
- Rapid Epidemiological Analysis of Comorbidities and Treatments as risk factors for COVID-19 in Scotland (REACT-SCOT): A population-based case-control study
- Correction: Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest–posttest comparison group study
- Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study
- The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis
- Differential association of air pollution exposure with neonatal and postneonatal mortality in England and Wales: A cohort study
- Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study
- Correction: Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study
- Correction: COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology
- PLOS Medicine
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE Program: A retrospective cohort analysis
- Correction: Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest–posttest comparison group study
- The impact of continuous quality improvement on coverage of antenatal HIV care tests in rural South Africa: Results of a stepped-wedge cluster-randomised controlled implementation trial
- Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání