The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis

Autoři: Andria Mousa aff001;  Abdullah Al-Taiar aff002;  Nicholas M. Anstey aff003;  Cyril Badaut aff005;  Bridget E. Barber aff003;  Quique Bassat aff008;  Joseph D. Challenger aff001;  Aubrey J. Cunnington aff013;  Dibyadyuti Datta aff014;  Chris Drakeley aff015;  Azra C. Ghani aff001;  Victor R. Gordeuk aff016;  Matthew J. Grigg aff003;  Pierre Hugo aff017;  Chandy C. John aff014;  Alfredo Mayor aff008;  Florence Migot-Nabias aff018;  Robert O. Opoka aff019;  Geoffrey Pasvol aff020;  Claire Rees aff021;  Hugh Reyburn aff015;  Eleanor M. Riley aff015;  Binal N. Shah aff016;  Antonio Sitoe aff009;  Colin J. Sutherland aff015;  Philip E. Thuma aff023;  Stefan A. Unger aff024;  Firmine Viwami aff026;  Michael Walther aff027;  Christopher J. M. Whitty aff015;  Timothy William aff028;  Lucy C. Okell aff001
Působiště autorů: MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom aff001;  School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America aff002;  Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia aff003;  Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia aff004;  Unité de Biothérapie Infectieuse et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France aff005;  Unité des Virus Emergents (UVE: Aix-Marseille Univ—IRD 190—Inserm 1207—IHU Méditerranée Infection), Marseille, France aff006;  QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia aff007;  ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain aff008;  Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique aff009;  ICREA, Barcelona, Spain aff010;  Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain aff011;  Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain aff012;  Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, United Kingdom aff013;  Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America aff014;  Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom aff015;  Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America aff016;  Medicines for Malaria Venture, Geneva, Switzerland aff017;  Université de Paris, MERIT, IRD, Paris, France aff018;  Department of Paediatrics and Child Health, Makerere University School of Medicine, Kampala, Uganda aff019;  Imperial College London, Department of Life Sciences, London, United Kingdom aff020;  Centre for Global Public Health, Institute of Population Health Sciences, Barts & The London School of Medicine & Dentistry, London, United Kingdom aff021;  Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom aff022;  Macha Research Trust, Choma, Zambia aff023;  Department of Child Life and Health, University of Edinburgh, United Kingdom aff024;  Department of Respiratory Medicine, Royal Hospital for Sick Children, Edinburgh, United Kingdom aff025;  Institut de Recherche Clinique du Bénin (IRCB), Cotonou, Benin aff026;  Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia aff027;  Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia aff028;  Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia aff029
Vyšlo v časopise: The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003359
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003359



Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as ‘test-and-treat’ policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM.

Methods and findings

A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case–control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle–Ottawa scale, and all studies were ranked as ‘Good’, scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged <15 years) SM patients and 5,780 (79.6% aged <15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07–1.64 for a delay of >24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92–4.06; p < 0.001) for a delay of 2–3 days and 5.46 (95% CI: 3.49–8.53; p < 0.001) for a delay of >7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] >3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24–4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70–9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify.


Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment.

Klíčová slova:

Anemia – Antimalarials – Blood transfusion – Cerebral malaria – Fevers – Health care facilities – Malaria – Medical risk factors


1. World Health Organization. World Malaria Report 2019. 2019 [cited 2020 Jan 17]. Available from:

2. Bennett A, Bisanzio D, Yukich JO, Mappin B, Fergus CA, Lynch M, et al. Population coverage of artemisinin-based combination treatment in children younger than 5 years with fever and Plasmodium falciparum infection in Africa, 2003–2015: a modelling study using data from national surveys. The Lancet Global health. 2017;5(4): e418–e27. doi: 10.1016/S2214-109X(17)30076-1 28288746

3. Camponovo F, Bever CA, Galactionova K, Smith T, Penny MA. Incidence and admission rates for severe malaria and their impact on mortality in Africa. Malaria Journal. 2017;16: 1. doi: 10.1186/s12936-016-1650-6 28049519

4. McCord GC, Liu A, Singh P. Deployment of community health workers across rural sub-Saharan Africa: financial considerations and operational assumptions. Bulletin of the World Health Organization. 2013;91: 244–53b. doi: 10.2471/BLT.12.109660 23599547

5. Taylor C, Griffiths F, Lilford R. Affordability of comprehensive community health worker programmes in rural sub-Saharan Africa. BMJ Global Health. 2017;2(3): e000391. doi: 10.1136/bmjgh-2017-000391 29018584

6. Oresanya O, Counihan H, Nndaliman I, Alegbeleye A, Jiya J, Adesoro O, et al. Effect of community-based intervention on improving access to treatment for sick under-five children in hard-to-reach communities in Niger State, Nigeria. Journal of global health. 2019;9(1): 010803. doi: 10.7189/jogh.09.010803 31263548

7. Prosnitz D, Herrera S, Coelho H, Moonzwe Davis L, Zalisk K, Yourkavitch J. Evidence of Impact: iCCM as a strategy to save lives of children under five. Journal of global health. 2019;9(1): 010801. doi: 10.7189/jogh.09.010801 31263547

8. Yansaneh AI, Moulton LH, George AS, Rao SR, Kennedy N, Bangura P, et al. Influence of community health volunteers on care seeking and treatment coverage for common childhood illnesses in the context of free health care in rural Sierra Leone. Tropical medicine & international health. 2014;19(12): 1466–76. doi: 10.1111/tmi.12383 25243929

9. Mukanga D, Tiono AB, Anyorigiya T, Kallander K, Konate AT, Oduro AR, et al. Integrated community case management of fever in children under five using rapid diagnostic tests and respiratory rate counting: a multi-country cluster randomized trial. The American journal of tropical medicine and hygiene. 2012;87(5 Suppl): 21–9. doi: 10.4269/ajtmh.2012.11–0816

10. Kidane G, Morrow RH. Teaching mothers to provide home treatment of malaria in Tigray, Ethiopia: a randomised trial. The Lancet. 2000;356(9229): 550–5. doi: 10.1016/S0140-6736(00)02580-0

11. Boone P, Elbourne D, Fazzio I, Fernandes S, Frost C, Jayanty C, et al. Effects of community health interventions on under-5 mortality in rural Guinea-Bissau (EPICS): a cluster-randomised controlled trial. The Lancet Global health. 2016;4(5): e328–35. doi: 10.1016/S2214-109X(16)30048-1 27102196

12. Okiro EA, Al-Taiar A, Reyburn H, Idro R, Berkley JA, Snow RW. Age patterns of severe paediatric malaria and their relationship to Plasmodium falciparum transmission intensity. Malaria Journal. 2009;8(1): 4. doi: 10.1186/1475-2875-8-4 19128453

13. Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, Olomi R, et al. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA. 2005;293(12): 1461–70. doi: 10.1001/jama.293.12.1461 15784869

14. Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA, et al. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS ONE. 2010;5(2):e8988. doi: 10.1371/journal.pone.0008988 20126547

15. Dondorp AM, Lee SJ, Faiz MA, Mishra S, Price R, Tjitra E, et al. The relationship between age and the manifestations of and mortality associated with severe malaria. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2008;47(2): 151–7. doi: 10.1086/589287 18533842

16. Njuguna P, Maitland K, Nyaguara A, Mwanga D, Mogeni P, Mturi N, et al. Observational study: 27 years of severe malaria surveillance in Kilifi, Kenya. BMC Medicine. 2019;17(1): 124. doi: 10.1186/s12916-019-1359-9 31280724

17. Mockenhaupt FP, Ehrhardt S, Burkhardt J, Bosomtwe SY, Laryea S, Anemana SD, et al. Manifestation and outcome of severe malaria in children in northern Ghana. The American journal of tropical medicine and hygiene. 2004;71(2): 167–72. 15306705

18. Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW, et al. Brain swelling and death in children with cerebral malaria. New England Journal of Medicine. 2015;372(12): 1126–37. doi: 10.1056/NEJMoa1400116 25785970

19. World Health Organization. World Malaria Report 2017. 2017 [cited 2020 Jan 17]. Available from:

20. Kigozi SP, Kigozi RN, Sserwanga A, Nankabirwa JI, Staedke SG, Kamya MR, et al. Malaria Burden through Routine Reporting: Relationship between Incidence and Test Positivity Rates. The American journal of tropical medicine and hygiene. 2019;101(1): 137–47. doi: 10.4269/ajtmh.18-0901 31074412

21. Meerman L, Ord R, Bousema JT, van Niekerk M, Osman E, Hallett R, et al. Carriage of chloroquine-resistant parasites and delay of effective treatment increase the risk of severe malaria in Gambian children. The Journal of infectious diseases. 2005;192(9): 1651–7. doi: 10.1086/496887 16206082

22. Al-Taiar A, Jaffar S, Assabri A, Al-Habori M, Azazy A, Al-Gabri A, et al. Who develops severe malaria? Impact of access to healthcare, socio-economic and environmental factors on children in Yemen: a case-control study. Tropical medicine & international health. 2018;13(6): 762–70. doi: 10.1111/j.1365-3156.2008.02066.x 18410250

23. Barber BE, Grigg MJ, William T, Piera KA, Boyle MJ, Yeo TW, et al. Effects of Aging on Parasite Biomass, Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Plasmodium knowlesi and Plasmodium falciparum Malaria. The Journal of infectious diseases. 2017;215(12): 1908–17. doi: 10.1093/infdis/jix193 28863470

24. Kahabuka C, Kvåle G, Hinderaker SG. Factors associated with severe disease from malaria, pneumonia and diarrhea among children in rural Tanzania–A hospital-based cross-sectional study. BMC Infectious Diseases. 2012;12: 219. doi: 10.1186/1471-2334-12-219 22978351

25. Mutsigiri-Murewanhema F, Mafaune PT, Shambira G, Juru T, Bangure D, Mungati M, et al. Factors associated with severe malaria among children below ten years in Mutasa and Nyanga districts, Zimbabwe, 2014–2015. Pan Afr Med J. 2017;27: 23. doi: 10.11604/pamj.2017.27.23.10957 28761599

26. Ossou-Nguiet PM, Okoko AR, Ekouya Bowassa G, Oko AP, Mabiala-Babela JR, Ndjobo Mamadoud IC, et al. Determinants of cerebral malaria in Congolese children. Revue neurologique. 2013;169(6–7): 510–4. doi: 10.1016/j.neurol.2012.11.003 23394850

27. Zoungrana A, Chou YJ, Pu C. Socioeconomic and environment determinants as predictors of severe malaria in children under 5 years of age admitted in two hospitals in Koudougou district, Burkina Faso: a cross sectional study. Acta tropica. 2014;139: 109–14. doi: 10.1016/j.actatropica.2014.07.011 25076108

28. Mpimbaza A, Ndeezi G, Katahoire A, Rosenthal PJ, Karamagi C. Demographic, Socioeconomic, and Geographic Factors Leading to Severe Malaria and Delayed Care Seeking in Ugandan Children: A Case-Control Study. The American journal of tropical medicine and hygiene. 2017;97(5): 1513–23. doi: 10.4269/ajtmh.17-0056 29016322

29. Higgins SJ, Xing K, Kim H, Kain DC, Wang F, Dhabangi A, et al. Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria. Malaria journal. 2013;12: 105. doi: 10.1186/1475-2875-12-105 23506269

30. Rovira-Vallbona E, Moncunill G, Bassat Q, Aguilar R, Machevo S, Puyol L, et al. Low antibodies against Plasmodium falciparum and imbalanced pro-inflammatory cytokines are associated with severe malaria in Mozambican children: a case-control study. Malaria journal. 2012;11: 181. doi: 10.1186/1475-2875-11-181 22646809

31. Kingston HW, Ghose A, Plewes K, Ishioka H, Leopold SJ, Maude RJ, et al. Disease Severity and Effective Parasite Multiplication Rate in Falciparum Malaria. Open forum infectious diseases. 2017;4(4): ofx169. doi: 10.1093/ofid/ofx169 29302604

32. Stoute JA, Odindo AO, Owuor BO, Mibei EK, Opollo MO, Waitumbi JN. Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis. 2003;187(3): 522–5. doi: 10.1086/367712 12552440.

33. World Health Organization. Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1990;84 Suppl 2: 1–65.

34. World Health Organization. Severe falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2000;94 Suppl 1: S1–90.

35. World Health Organization. Severe Malaria. Tropical Medicine & International Health. 2014;19(s1): 7–131. doi: 10.1111/tmi.12313_2 25214480

36. Phillips A, Bassett P, Szeki S, Newman S, Pasvol G. Risk Factors for Severe Disease in Adults with Falciparum Malaria. Clinical Infectious Diseases. 2009;48(7):871–8. doi: 10.1086/597258 19243243

37. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data: The PRISMA-IPD Statement. JAMA. 2015;313(16): 1657–65. doi: 10.1001/jama.2015.3656 25919529

38. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000 [cited 2020 August 10]. Available from:

39. Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. The Lancet. 2019;394(10195):322–31. doi: 10.1016/S0140-6736(19)31097-9 31229234

40. World Health Organization. A framework for malaria elimination 2017. 2017 [cited 2020 Jan 17]. Available from:

41. Alegana VA, Wright JA, Pentrina U, Noor AM, Snow RW, Atkinson PM. Spatial modelling of healthcare utilisation for treatment of fever in Namibia. International journal of health geographics. 2012;11: 6. doi: 10.1186/1476-072X-11-6 22336441

42. Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A. Determining Global Population Distribution: Methods, Applications and Data. Adv Parasitol. 2006;62: 119–56. doi: 10.1016/S0065-308X(05)62004-0 16647969

43. Center for International Earth Science Information Network—CIESIN—Columbia University IFPRI-I, The World Bank, and Centro Internacional de Agricultura Tropical–CIAT. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. 2011.

44. Winskill P, Whittaker C, Walker P, Watson O, Laydon D, Imai N, et al. Report 22: Equity in response to the COVID-19 pandemic: an assessment of the direct and indirect impacts on disadvantaged and vulnerable populations in low- and lower middle-income countries. Imperial College London. 2020 [cited 2020 Jul 17].

45. European Commission–Eurostat and DG for Regional and Urban Policy–ILO F, OECD, UN-Habitat, World Bank. A recommendation on the method to delineate cities, urban and rural areas for international statistical comparisons 2020. 2020 [cited 2020 Jul 17]. Available from:

46. Badaut C, Guyonnet L, Milet J, Renard E, Durand R, Viwami F, et al. Immunoglobulin response to Plasmodium falciparum RESA proteins in uncomplicated and severe malaria. Malaria Journal. 2015;14: 278. doi: 10.1186/s12936-015-0799-8 26178656

47. Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, Deininger S, et al. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog. 2009;5(4): e1000364. doi: 10.1371/journal.ppat.1000364 19343213

48. Rees CP, Hawkesworth S, Moore SE, Dondeh BL, Unger SA. Factors Affecting Access to Healthcare: An Observational Study of Children under 5 Years of Age Presenting to a Rural Gambian Primary Healthcare Centre. PLoS ONE. 2016;11(6): e0157790. doi: 10.1371/journal.pone.0157790 27336164

49. Nadjm B, Amos B, Mtove G, Ostermann J, Chonya S, Wangai H, et al. WHO guidelines for antimicrobial treatment in children admitted to hospital in an area of intense Plasmodium falciparum transmission: prospective study. BMJ. 2010;340: c1350. doi: 10.1136/bmj.c1350 20354024

50. John CC, Opika-Opoka R, Byarugaba J, Idro R, Boivin MJ. Low Levels of RANTES Are Associated with Mortality in Children with Cerebral Malaria. The Journal of Infectious Diseases. 2006;194(6): 837–45. doi: 10.1086/506623 16941352

51. Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, Romero RA, et al. Severe malarial anemia is associated with long-term neurocognitive impairment. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2014;59(3): 336–44. doi: 10.1093/cid/ciu293 24771329

52. Thuma PE, van Dijk J, Bucala R, Debebe Z, Nekhai S, Kuddo T, et al. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis. 2011;203(2): 211–9. doi: 10.1093/infdis/jiq041 21288821

53. Ejov MN, Tun T, Aung S, Lwin S, Sein K. Hospital-based study of severe malaria and associated deaths in Myanmar. Bulletin of the World Health Organization. 1999;77(4): 310–4. 10327709

54. Gellert S, Hassan BY, Meleh S, Hiesgen G. Malaria prevalence and outcome in the in-patients of the Paediatric Department of the State Specialists Hospital (SSH), Maiduguri, Nigeria. Journal of tropical pediatrics. 1998;44(2): 109–13. doi: 10.1093/tropej/44.2.109 9604601

55. Gomes MF, Faiz MA, Gyapong JO, Warsame M, Agbenyega T, Babiker A, et al. Pre-referral rectal artesunate to prevent death and disability in severe malaria: a placebo-controlled trial. Lancet (London, England). 2009;373(9663): 557–66. doi: 10.1016/s0140-6736(08)61734-1 19059639

56. Meremikwu M, Smith HJ. Blood transfusion for treating malarial anaemia. The Cochrane database of systematic reviews. 2000;(2): Cd001475. doi: 10.1002/14651858.CD001475 10796646

57. Verra F, Angheben A, Martello E, Giorli G, Perandin F, Bisoffi Z. A systematic review of transfusion-transmitted malaria in non-endemic areas. Malaria Journal. 2018;17(1): 36. doi: 10.1186/s12936-018-2181-0 29338786

58. Lackritz EM, Campbell CC, Ruebush TK 2nd, Hightower AW, Wakube W, Steketee RW, et al. Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet (London, England). 1992;340(8818): 524–8. doi: 10.1016/0140-6736(92)91719-o

59. Phiri KS, Calis JCJ, Faragher B, Nkhoma E, Ng'oma K, Mangochi B, et al. Long term outcome of severe anaemia in Malawian children. PLoS ONE. 2008;3(8): e2903–e. doi: 10.1371/journal.pone.0002903 18682797.

60. Opoka RO, Waiswa A, Harriet N, John CC, Tumwine JK, Karamagi C. Blackwater Fever in Ugandan Children With Severe Anemia is Associated With Poor Postdischarge Outcomes: A Prospective Cohort Study. Clinical Infectious Diseases. 2019;70(11): 2247–54. doi: 10.1093/cid/ciz648 31300826

61. Schellenberg D, Schellenberg JR, Mushi A, Savigny D, Mgalula L, Mbuya C, et al. The silent burden of anaemia in Tanzanian children: a community-based study. Bull World Health Organisation. 2003;81(8): 581–90.

62. Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood. 2011;117(2): 381–92. doi: 10.1182/blood-2010-04-202911 20852127

63. Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. The Journal of Infection. 2013;67(3): 220–30. doi: 10.1016/j.jinf.2013.04.013 23623771

64. Avril M, Brazier AJ, Melcher M, Sampath S, Smith JD. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLoS Pathog. 2013;9(6): e1003430. doi: 10.1371/journal.ppat.1003430 23825944

65. Bertin GI, Lavstsen T, Guillonneau F, Doritchamou J, Wang CW, Jespersen JS, et al. Expression of the Domain Cassette 8 Plasmodium falciparum Erythrocyte Membrane Protein 1 Is Associated with Cerebral Malaria in Benin. PLoS ONE. 2013;8(7): e68368. doi: 10.1371/journal.pone.0068368 23922654

66. Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, Williams TN, et al. Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome. PLoS ONE. 2011;6(3): e14741. doi: 10.1371/journal.pone.0014741 21390226

67. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498(7455): 502–5. doi: 10.1038/nature12216 23739325

68. Georgiadou A, Lee HJ, Walther M, van Beek AE, Fitriani F, Wouters D, et al. Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions. Nature Microbiology. 2019;4(9): 1592–602. doi: 10.1038/s41564-019-0474-x 31209307

69. Guerra Mendoza Y, Garric E, Leach A, Lievens M, Ofori-Anyinam O, Pircon JY, et al. Safety profile of the RTS,S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa. Human vaccines & immunotherapeutics. 2019;15(10): 2386–98. doi: 10.1080/21645515.2019.1586040 31012786

70. Clark TD, Njama-Meya D, Nzarubara B, Maiteki-Sebuguzi C, Greenhouse B, Staedke SG, et al. Incidence of Malaria and Efficacy of Combination Antimalarial Therapies over 4 Years in an Urban Cohort of Ugandan Children. PLoS ONE. 2010;5(7): e11759. doi: 10.1371/journal.pone.0011759 20689585

71. Mpimbaza A, Katahoire A, Rosenthal PJ, Karamagi C, Ndeezi G. Caregiver responses and association with delayed care-seeking in children with uncomplicated and severe malaria. Malaria Journal. 2018;17(1): 476. doi: 10.1186/s12936-018-2630-9 30563514

72. Anumudu CI, Okafor CMF, Ngwumohaike V, Afolabi KA, Nwuba RI, Nwagwu M. Epidemiological factors that promote the development of severe malaria anaemia in children in Ibadan. African Health Sciences. 2007;7(2): 80–5. doi: 10.5555/afhs.2007.7.2.80 17594284

73. Group ACTwatch, Kaula H, Buyungo P, Opigo J. Private sector role, readiness and performance for malaria case management in Uganda, 2015. Malaria journal. 2017;16(1): 219. doi: 10.1186/s12936-017-1824-x 28545583

74. Mensah-Brown HE, Abugri J, Asante KP, Dwomoh D, Dosoo D, Atuguba F, et al. Assessing the impact of differences in malaria transmission intensity on clinical and haematological indices in children with malaria. Malaria Journal. 2017;16(1): 96. doi: 10.1186/s12936-017-1745-8 28249579

75. Bourgeois FT, Porter SC, Valim C, Jackson T, Cook EF, Mandl KD. The value of patient self-report for disease surveillance. J Am Med Inform Assoc. 2007;14(6): 765–71. doi: 10.1197/jamia.M2134 17712092

76. Overbey KN, Schwab KJ, Exum NG. Comparison of 1-week and 2-week recall periods for caregiver-reported diarrhoeal illness in children, using nationally representative household surveys. International Journal of Epidemiology. 2019;48(4): 1228–39. doi: 10.1093/ije/dyz043 30907423

77. Arnold BF, Galiani S, Ram PK, Hubbard AE, Briceno B, Gertler PJ, et al. Optimal recall period for caregiver-reported illness in risk factor and intervention studies: a multicountry study. American journal of epidemiology. 2013;177(4): 361–70. doi: 10.1093/aje/kws281 23364878

78. Lamberti LM, Fischer Walker CL, Taneja S, Mazumder S, Black RE. The Influence of Episode Severity on Caregiver Recall, Care-seeking, and Treatment of Diarrhea Among Children 2–59 Months of Age in Bihar, Gujarat, and Uttar Pradesh, India. The American journal of tropical medicine and hygiene. 2015;93(2): 250–6. doi: 10.4269/ajtmh.14-0727 26033018

79. World Health Organization. World Malaria Report 2018. 2018 [cited 2020 Jan 17]. Available from:

80. Papaioannou I, Utzinger J, Vounatsou P. Malaria-anemia comorbidity prevalence as a measure of malaria-related deaths in sub-Saharan Africa. Sci Rep. 2019;9(1): 11323–. doi: 10.1038/s41598-019-47614-6 31383881

81. Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC. Gradual acquisition of immunity to severe malaria with increasing exposure. Proceedings Biological sciences. 2015;282(1801): 20142657. doi: 10.1098/rspb.2014.2657 25567652

82. Manongi R, Mtei F, Mtove G, Nadjm B, Muro F, Alegana V, et al. Inpatient child mortality by travel time to hospital in a rural area of Tanzania. Tropical medicine & international health. 2014;19(5): 555–62. doi: 10.1111/tmi.12294 24661618

Článek vyšel v časopise

PLOS Medicine

2020 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Antiseptika a prevence ve stomatologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Citikolin v neuroprotekci a neuroregeneraci: od výzkumu do klinické praxe nejen očních lékařů
Autoři: MUDr. Petr Výborný, CSc., FEBO

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Diagnostika a léčba deprese pro ambulantní praxi
Autoři: MUDr. Jan Hubeňák, Ph.D

Význam nemocničního alert systému v době SARS-CoV-2
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D., prim. MUDr. Václava Adámková

Všechny kurzy
Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se