Universal third-trimester ultrasonic screening using fetal macrosomia in the prediction of adverse perinatal outcome: A systematic review and meta-analysis of diagnostic test accuracy


Autoři: Alexandros A. Moraitis aff001;  Norman Shreeve aff001;  Ulla Sovio aff001;  Peter Brocklehurst aff002;  Alexander E. P. Heazell aff003;  Jim G. Thornton aff005;  Stephen C. Robson aff006;  Aris Papageorghiou aff007;  Gordon C. Smith aff001
Působiště autorů: Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom aff001;  Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom aff002;  Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biological, Medical and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom aff003;  St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom aff004;  Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom aff005;  Reproductive and Vascular Biology Group, The Medical School, University of Newcastle, Newcastle, United Kingdom aff006;  Nuffield Department of Obstetrics and Gynaecology, Oxford, United Kingdom aff007
Vyšlo v časopise: Universal third-trimester ultrasonic screening using fetal macrosomia in the prediction of adverse perinatal outcome: A systematic review and meta-analysis of diagnostic test accuracy. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003190
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003190

Souhrn

Background

The effectiveness of screening for macrosomia is not well established. One of the critical elements of an effective screening program is the diagnostic accuracy of a test at predicting the condition. The objective of this study is to investigate the diagnostic effectiveness of universal ultrasonic fetal biometry in predicting the delivery of a macrosomic infant, shoulder dystocia, and associated neonatal morbidity in low- and mixed-risk populations.

Methods and findings

We conducted a predefined literature search in Medline, Excerpta Medica database (EMBASE), the Cochrane library and ClinicalTrials.gov from inception to May 2020. No language restrictions were applied. We included studies where the ultrasound was performed as part of universal screening and those that included low- and mixed-risk pregnancies and excluded studies confined to high risk pregnancies. We used the estimated fetal weight (EFW) (multiple formulas and thresholds) and the abdominal circumference (AC) to define suspected large for gestational age (LGA). Adverse perinatal outcomes included macrosomia (multiple thresholds), shoulder dystocia, and other markers of neonatal morbidity. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analysis was carried out using the hierarchical summary receiver operating characteristic (ROC) and the bivariate logit-normal (Reitsma) models. We identified 41 studies that met our inclusion criteria involving 112,034 patients in total. These included 11 prospective cohort studies (N = 9986), one randomized controlled trial (RCT) (N = 367), and 29 retrospective cohort studies (N = 101,681). The quality of the studies was variable, and only three studies blinded the ultrasound findings to the clinicians. Both EFW >4,000 g (or 90th centile for the gestational age) and AC >36 cm (or 90th centile) had >50% sensitivity for predicting macrosomia (birthweight above 4,000 g or 90th centile) at birth with positive likelihood ratios (LRs) of 8.74 (95% confidence interval [CI] 6.84–11.17) and 7.56 (95% CI 5.85–9.77), respectively. There was significant heterogeneity at predicting macrosomia, which could reflect the different study designs, the characteristics of the included populations, and differences in the formulas used. An EFW >4,000 g (or 90th centile) had 22% sensitivity at predicting shoulder dystocia with a positive likelihood ratio of 2.12 (95% CI 1.34–3.35). There was insufficient data to analyze other markers of neonatal morbidity.

Conclusions

In this study, we found that suspected LGA is strongly predictive of the risk of delivering a large infant in low- and mixed-risk populations. However, it is only weakly (albeit statistically significantly) predictive of the risk of shoulder dystocia. There was insufficient data to analyze other markers of neonatal morbidity.

Klíčová slova:

Birth weight – Medical risk factors – Metaanalysis – Morbidity – Neonates – Pregnancy – Systematic reviews – Ultrasound imaging


Zdroje

1. Moraitis AA, Wood AM, Fleming M, Smith GC. Birth weight percentile and the risk of term perinatal death. Obstetrics and gynecology. 2014;124(2 Pt 1):274–83. Epub 2014/07/09. doi: 10.1097/aog.0000000000000388. 25004344.

2. Esakoff TF, Cheng YW, Sparks TN, Caughey AB. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. American journal of obstetrics and gynecology. 2009;200(6):672.e1–4. Epub 2009/04/21. doi: 10.1016/j.ajog.2009.02.035. 19376489.

3. Campbell S, Wilkin D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. British journal of obstetrics and gynaecology. 1975;82(9):689–97. Epub 1975/09/01. doi: 10.1111/j.1471-0528.1975.tb00708.x. 1101942.

4. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. American journal of obstetrics and gynecology. 1985;151(3):333–7. Epub 1985/02/01. doi: 10.1016/0002-9378(85)90298-4 3881966.

5. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181(1):129–33. Epub 1991/10/01. doi: 10.1148/radiology.181.1.1887021. 1887021.

6. Boulvain M, Irion O, Dowswell T, Thornton JG. Induction of labour at or near term for suspected fetal macrosomia. Cochrane Database Syst Rev. 2016;(5):Cd000938. Epub 2016/05/23. doi: 10.1002/14651858.CD000938.pub2. 27208913.

7. National Collaborating Centre for Ws, Children's H. National Institute for Health and Clinical Excellence: Guidance. Antenatal Care: Routine Care for the Healthy Pregnant Woman. London: RCOG Press National Collaborating Centre for Women's and Children's Health.; 2008.

8. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011;155(8):529–36. Epub 2011/10/19. doi: 10.7326/0003-4819-155-8-201110180-00009. 22007046.

9. Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol. 1991;44(8):763–70. Epub 1991/01/01. doi: 10.1016/0895-4356(91)90128-v 1941027.

10. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Statistics in medicine. 2001;20(19):2865–84. Epub 2001/09/25. doi: 10.1002/sim.942 11568945.

11. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58(10):982–90. Epub 2005/09/20. doi: 10.1016/j.jclinepi.2005.02.022. 16168343.

12. Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. BMJ (Clinical research ed). 2001;323(7305):157–62. Epub 2001/07/21. doi: 10.1136/bmj.323.7305.157 11463691; PubMed Central PMCID: PMC1120791.

13. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93. Epub 2005/08/09. doi: 10.1016/j.jclinepi.2005.01.016. 16085191.

14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. Epub 2009/07/22. doi: 10.1371/journal.pmed.1000097. 19621072; PubMed Central PMCID: PMC2707599.

15. Aviram A, Yogev Y, Ashwal E, Hiersch L, Hadar E, Gabbay-Benziv R. Prediction of large for gestational age by various sonographic fetal weight estimation formulas-which should we use? Journal of Perinatology. 2017;37(5):513–7. doi: 10.1038/jp.2017.5 28151496.

16. Balsyte D, Schaffer L, Burkhardt T, Wisser J, Kurmanavicius J. Sonographic prediction of macrosomia cannot be improved by combination with pregnancy-specific characteristics. Ultrasound in Obstetrics & Gynecology. 2009;33(4):453–8. doi: 10.1002/uog.6282 19266500.

17. Benacerraf BR, Gelman R, Frigoletto FD Jr. Sonographically estimated fetal weight: Accuracy and limitation. American Journal of Obstetrics and Gynecology. 1988;159(5):1118–21. doi: 10.1016/0002-9378(88)90425-5 3055999.

18. Ben-Haroush A, Yogev Y, Hod M, Bar J. Predictive value of a single early fetal weight estimate in normal pregnancies. European Journal of Obstetrics Gynecology and Reproductive Biology. 2007;130(2):187–92. 46097242.

19. Ben-Haroush A, Melamed N, Mashiach R, Meizner I, Yogev Y. Use of the amniotic fluid index combined with estimated fetal weight within 10 days of delivery for prediction of macrosomia at birth. Journal of Ultrasound in Medicine. 2008;27(7):1029–32. doi: 10.7863/jum.2008.27.7.1029 18577666.

20. Benson CB, Coughlin BF, Doubilet PM. Amniotic fluid volume in large-for-gestational-age fetuses of nondiabetic mothers. Journal of Ultrasound in Medicine. 1991;10(3):149–51. doi: 10.7863/jum.1991.10.3.149 2027186.

21. Burkhardt T, Schmidt M, Kurmanavicius J, Zimmermann R, Schaffer L. Evaluation of fetal anthropometric measures to predict the risk for shoulder dystocia. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2014;43(1):77–82. 373970964.

22. Chauhan SP, Parker D, Shields D, Sanderson M, Cole JH, Scardo JA. Sonographic estimate of birth weight among high-risk patients: feasibility and factors influencing accuracy. American journal of obstetrics and gynecology. 2006;195(2):601–6. Epub 2006/06/27. doi: 10.1016/j.ajog.2006.04.012. 16796980.

23. Chervenak JL, Divon MY, Hirsch J, Girz BA, Langer O. Macrosomia in the postdate pregnancy: Is routine ultrasonographic screening indicated? American Journal of Obstetrics and Gynecology. 1989;161(3):753–6. doi: 10.1016/0002-9378(89)90395-5 2675605.

24. Cohen JM, Hutcheon JA, Kramer MS, Joseph KS, Abenhaim H, Platt RW. Influence of ultrasound-to-delivery interval and maternal-fetal characteristics on validity of estimated fetal weight. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2010;35(4):434–41. 359676712.

25. Crimmins S, Mo C, Nassar Y, Kopelman JN, Turan OM. Polyhydramnios or Excessive Fetal Growth Are Markers for Abnormal Perinatal Outcome in Euglycemic Pregnancies. American Journal of Perinatology. 2018;35(2):140–5. doi: 10.1055/s-0037-1606186 28838004.

26. Cromi A, Ghezzi F, Di Naro E, Siesto G, Bergamini V, Raio L. Large cross-sectional area of the umbilical cord as a predictor of fetal macrosomia. Ultrasound in Obstetrics & Gynecology. 2007;30(6):861–6. doi: 10.1002/uog.5183 17960667.

27. De Reu PAOM, Smits LJM, Oosterbaan HP, Nijhuis JG. Value of a single early third trimester fetal biometry for the prediction of birth weight deviations in a low risk population. Journal of Perinatal Medicine. 2008;36(4):324–9. doi: 10.1515/JPM.2008.057 18598122

28. Freire DMC, Cecatti JG, Paiva CSM. Correlation between estimated fetal weight by ultrasound and neonatal weight. [Portuguese]. Revista Brasileira de Ginecologia e Obstetricia. 2010;32(1):4–10. doi: 10.1590/s0100-72032010000100002 20209256.

29. Galvin DM, Burke N, Burke G, Breathnach F, McAuliffe F, Morrison J, et al. 94: Accuracy of prenatal detection of macrosomia >4,000g and outcomes in the absence of intervention: results of the prospective multicenter genesis study. American Journal of Obstetrics and Gynecology. 2017;216(1, Supplement):S68. https://doi.org/10.1016/j.ajog.2016.11.983.

30. Gilby JR, Williams MC, Spellacy WN. Fetal abdominal circumference measurements of 35 and 38 cm as predictors of macrosomia. A risk factor for shoulder dystocia. Journal of Reproductive Medicine. 2000;45(11):936–8. 11127108.

31. Hasenoehrl G, Pohlhammer A, Gruber R, Staudach A, Steiner H. Fetal weight estimation by 2D and 3D ultrasound: Comparison of six formulas. Ultraschall in der Medizin. 2009;30(6):585–90. doi: 10.1055/s-0028-1109185 19544232.

32. Hendrix NW, Grady CS, Chauhan SP. Clinical vs. sonographic estimate of birth weight in term parturients. A randomized clinical trial. Journal of Reproductive Medicine. 2000;45(4):317–22. 10804488.

33. Henrichs C, Magann EF, Brantley KL, Crews JH, Sanderson M, Chauhan SP. Detecting fetal macrosomia with abdominal circumference alone. Journal of Reproductive Medicine. 2003;48(5):339–42. 12815906.

34. Humphries J, Reynolds D, Bell-Scarbrough L, Lynn N, Scardo JA, Chauhan SP. Sonographic estimate of birth weight: relative accuracy of sonographers versus maternal-fetal medicine specialists. Journal of Maternal-Fetal & Neonatal Medicine. 2002;11(2):108–12. doi: 10.1080/jmf.11.2.108.112 12375539.

35. Kayem G, Grange G, Breart G, Goffinet F. Comparison of fundal height measurement and sonographically measured fetal abdominal circumference in the prediction of high and low birth weight at term. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2009;34(5):566–71. Epub 2009/07/08. doi: 10.1002/uog.6378. 19582801.

36. Kehl S, Brade J, Schmidt U, Berlit S, Bohlmann MK, Sutterlin M, et al. Role of fetal abdominal circumference as a prognostic parameter of perinatal complications. Archives of Gynecology & Obstetrics. 2011;284(6):1345–9. doi: 10.1007/s00404-011-1888-8 21431328.

37. Khan N, Ciobanu A, Karampitsakos T, Akolekar R, Nicolaides KH. Prediction of large for gestational age neonates by routine third trimester ultrasound. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2019;25. 628504046.

38. Levine AB, Lockwood CJ, Brown B, Lapinski R, Berkowitz RL. Sonographic diagnosis of the large for gestational age fetus at term: does it make a difference? Obstetrics & Gynecology. 1992;79(1):55–8. 1727587.

39. Melamed N, Yogev Y, Meizner I, Mashiach R, Pardo J, Ben-Haroush A. Prediction of fetal macrosomia: effect of sonographic fetal weight-estimation model and threshold used. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2011;38(1):74–81. 362515594.

40. Miller JM Jr., Korndorffer FA 3rd, Gabert HA. Fetal weight estimates in late pregnancy with emphasis on macrosomia. Journal of Clinical Ultrasound. 1986;14(6):437–42. doi: 10.1002/jcu.1870140606 3091643.

41. Miller JM Jr, Brown HL, Khawli OF, Pastorek IJG, Gabert HA. Ultrasonographic identification of the macrosomic fetus. American Journal of Obstetrics and Gynecology. 1988;159(5):1110–4. doi: 10.1016/0002-9378(88)90423-1 3055998.

42. Nahum GG, Pham KQ, McHugh JP. Ultrasonic prediction of term birth weight in Hispanic women. Accuracy in an outpatient clinic. Journal of Reproductive Medicine. 2003;48(1):13–22. 12611089.

43. Nahum GG, Stanislaw H. A computerized method for accurately predicting fetal macrosomia up to 11 weeks before delivery. European Journal of Obstetrics, Gynecology, & Reproductive Biology. 2007;133(2):148–56. doi: 10.1016/j.ejogrb.2006.08.011 17010500.

44. Nicod AC, Hohlfeld P, Vial Y. Performance of ultrasound estimation of fetal weight in fetuses weighing < = 2000 g and more than 4000 g. [French]. Revue Medicale Suisse. 2012;8(359):2022–7. 23167077.

45. O'Reilly-Green CP, Divon MY. Receiver operating characteristic curves of sonographic estimated fetal weight for prediction of macrosomia in prolonged pregnancies. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 1997;9(6):403–8. Epub 1997/06/01. doi: 10.1046/j.1469-0705.1997.09060403.x. 9239826.

46. Pates JA, McIntire DD, Casey BM, Leveno KJ. Predicting macrosomia. Journal of Ultrasound in Medicine. 2008;27(1):39–43. doi: 10.7863/jum.2008.27.1.39 18096729.

47. Peregrine E, O'Brien P, Jauniaux E. Clinical and ultrasound estimation of birth weight prior to induction of labor at term. Ultrasound in Obstetrics & Gynecology. 2007;29(3):304–9. doi: 10.1002/uog.3949 17290365.

48. Pollack RN, Hauer-Pollack G, Divon MY. Macrosomia in postdates pregnancies: the accuracy of routine ultrasonographic screening. American Journal of Obstetrics & Gynecology. 1992;167(1):7–11. doi: 10.1016/s0002-9378(11)91615-9 1442959.

49. Rossavik IK, Joslin GL. Macrosomatia and ultrasonography: what is the problem? Southern Medical Journal. 1993;86(10):1129–32. doi: 10.1097/00007611-199310000-00010 8211330.

50. Sapir A, Khayyat I, Drukker L, Rabinowitz R, Samueloff A, Sela HY. Ultrasound predication of shoulder dystocia in low risk term singleton deliveries. American Journal of Obstetrics and Gynecology. 2017;216 (1 Supplement 1):S221. 614090070.

51. Smith GC, Smith MF, McNay MB, Fleming JE. The relation between fetal abdominal circumference and birthweight: findings in 3512 pregnancies. British journal of obstetrics and gynaecology. 1997;104(2):186–90. Epub 1997/02/01. doi: 10.1111/j.1471-0528.1997.tb11042.x 9070136.

52. Sovio U, Moraitis AA, Wong HS, Smith GCS. Universal vs selective ultrasonography to screen for large-for-gestational-age infants and associated morbidity. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2018;51(6):783–91. Epub 2017/04/21. doi: 10.1002/uog.17491. 28425156.

53. Sritippayawan S, Anansakunwat W, Suthantikorn C. The accuracy of gestation-adjusted projection method in estimating birth weight by sonographic fetal measurements in the third trimester. Journal of the Medical Association of Thailand. 2007;90(6):1058–67. 17624197.

54. Sylvestre G, Divon MY, Onyeije C, Fisher M. Diagnosis of macrosomia in the postdates population: combining sonographic estimates of fetal weight with glucose challenge testing. Journal of Maternal-Fetal Medicine. 2000;9(5):287–90. doi: 10.1002/1520-6661(200009/10)9:5<287::AID-MFM6>3.0.CO;2-1 11132584.

55. Weiner Z, Ben-Shlomo I, Beck-Fruchter R, Goldberg Y, Shalev E. Clinical and ultrasonographic weight estimation in large for gestational age fetus. European Journal of Obstetrics, Gynecology, & Reproductive Biology. 2002;105(1):20–4. doi: 10.1016/s0301-2115(02)00140-9 12270559.

56. Burke N, Burke G, Breathnach F, McAuliffe F, Morrison JJ, Turner M, et al. Prediction of cesarean delivery in the term nulliparous woman: results from the prospective, multicenter Genesis study. American journal of obstetrics and gynecology. 2017;216(6):598.e1–.e11. Epub 2017/02/19. doi: 10.1016/j.ajog.2017.02.017. 28213060.

57. Ouzounian JG. Shoulder Dystocia: Incidence and Risk Factors. Clin Obstet Gynecol. 2016;59(4):791–4. Epub 2016/10/21. doi: 10.1097/GRF.0000000000000227. 27662540.

58. Little SE, Edlow AG, Thomas AM, Smith NA. Estimated fetal weight by ultrasound: a modifiable risk factor for cesarean delivery? American journal of obstetrics and gynecology. 2012;207(4):309.e1–6. Epub 2012/08/21. doi: 10.1016/j.ajog.2012.06.065. 22902073.

59. Blackwell SC, Refuerzo J, Chadha R, Carreno CA. Overestimation of fetal weight by ultrasound: does it influence the likelihood of cesarean delivery for labor arrest? American journal of obstetrics and gynecology. 2009;200(3):340.e1–3. Epub 2009/03/04. doi: 10.1016/j.ajog.2008.12.043. 19254597.

60. Sovio U, White IR, Dacey A, Pasupathy D, Smith GCS. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet (London, England). 2015;386(10008):2089–97. Epub 2015/09/12. doi: 10.1016/s0140-6736(15)00131-2. 26360240; PubMed Central PMCID: PMC4655320.

61. Heazell AE, Hayes DJ, Whitworth M, Takwoingi Y, Bayliss SE, Davenport C. Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database Syst Rev. 2019;5:Cd012245. Epub 2019/05/16. doi: 10.1002/14651858.CD012245.pub2. 31087568; PubMed Central PMCID: PMC6515632.


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Imunitní trombocytopenie (ITP) u dospělých pacientů
nový kurz
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais

White paper - jak vidíme optimální péči o zubní náhrady
Autoři: MUDr. Jindřich Charvát, CSc.

Hemofilie - série kurzů

Faktory ovlivňující léčbu levotyroxinem
Autoři:

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×