Excess crossovers impede faithful meiotic chromosome segregation in C. elegans

Autoři: Jeremy A. Hollis aff001;  Marissa L. Glover aff002;  Aleesa J. Schlientz aff002;  Cori K. Cahoon aff002;  Bruce Bowerman aff002;  Sarah M. Wignall aff001;  Diana E. Libuda aff002
Působiště autorů: Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America aff001;  Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, United States of America aff002
Vyšlo v časopise: Excess crossovers impede faithful meiotic chromosome segregation in C. elegans. PLoS Genet 16(9): e1009001. doi:10.1371/journal.pgen.1009001
Kategorie: Research Article
doi: 10.1371/journal.pgen.1009001


During meiosis, diploid organisms reduce their chromosome number by half to generate haploid gametes. This process depends on the repair of double strand DNA breaks as crossover recombination events between homologous chromosomes, which hold homologs together to ensure their proper segregation to opposite spindle poles during the first meiotic division. Although most organisms are limited in the number of crossovers between homologs by a phenomenon called crossover interference, the consequences of excess interfering crossovers on meiotic chromosome segregation are not well known. Here we show that extra interfering crossovers lead to a range of meiotic defects and we uncover mechanisms that counteract these errors. Using chromosomes that exhibit a high frequency of supernumerary crossovers in Caenorhabditis elegans, we find that essential chromosomal structures are mispatterned in the presence of multiple crossovers, subjecting chromosomes to improper spindle forces and leading to defects in metaphase alignment. Additionally, the chromosomes with extra interfering crossovers often exhibited segregation defects in anaphase I, with a high incidence of chromatin bridges that sometimes created a tether between the chromosome and the first polar body. However, these anaphase I bridges were often able to resolve in a LEM-3 nuclease dependent manner, and chromosome tethers that persisted were frequently resolved during Meiosis II by a second mechanism that preferentially segregates the tethered sister chromatid into the polar body. Altogether these findings demonstrate that excess interfering crossovers can severely impact chromosome patterning and segregation, highlighting the importance of limiting the number of recombination events between homologous chromosomes for the proper execution of meiosis.

Klíčová slova:

Anaphase – Crossover interference – Homologous chromosomes – Chromatin – Chromosome structure and function – Meiosis – Metaphase – Oocytes


1. Gray S, Cohen PE. Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation. Annual Review of Genetics. 2016. p. 175–210.

2. Muller HJ. The mechanism of crossing-over. Am Nat. 1916;L.(592):193–221.

3. Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool. 1913;14(1):43–59.

4. Martinez-Perez E, Colaiácovo MP. Distribution of meiotic recombination events: talking to your neighbors. Curr Opin Genet Dev. 2009;19(2):105–12.

5. Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature. 2013;502(7473):703–6.

6. Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012;149(1):75–87.

7. Hillers KJ, Villeneuve AM. Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol. 2003;13(18):1641–7.

8. Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev. 2008;22(20):2886–901.

9. Nabeshima K, Villeneuve AM, Colaiácovo MP. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol. 2005;168(5):683–9.

10. Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M. The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr Biol. 2002;12(10):798–812.

11. Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol. 2002;157(2):219–29.

12. Wignall SM, Villeneuve AM. Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol. 2009;11(7):839–44.

13. Dumont J, Oegema K, Desai A. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat Cell Biol. 2010;12(9):894–901.

14. Mullen TJ, Davis-Roca AC, Wignall SM. Spindle assembly and chromosome dynamics during oocyte meiosis. Curr Opin Cell Biol. 2019;60:53–9.

15. Connolly AA, Sugioka K, Chuang CH, Lowry JB, Bowerman B. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol. 2015;210(6):917–32.

16. Han X, Adames K, Sykes EME, Srayko M. The KLP-7 residue S546 is a putative Aurora kinase site required for microtubule regulation at the centrosome in C. elegans. PLoS One. 2015;10(7).

17. Davis-Roca AC, Divekar NS, Ng RK, Wignall SM. Dynamic SUMO remodeling drives a series of critical events during the meiotic divisions in Caenorhabditis elegans. PLoS Genet. 2018;14(9).

18. Pelisch F, Tammsalu T, Wang B, Jaffray EG, Gartner A, Hay RT. A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Mol Cell. 2017;65(1):66–77.

19. Muscat CC, Torre-Santiago KM, Tran M V., Powers JA, Wignall SM. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles. Elife. 2015;4:e06462.

20. Laband K, Le Borgne R, Edwards F, Stefanutti M, Canman JC, Verbavatz JM, et al. Chromosome segregation occurs by microtubule pushing in oocytes. Nat Commun. 2017;8(1).

21. Pelisch F, Bel Borja L, Jaffray EG, Hay RT. Sumoylation regulates protein dynamics during meiotic chromosome segregation in C. elegans oocytes. J Cell Sci. 2019;132(14).

22. Romano A, Guse A, Krascenicova I, Schnabel H, Schnabel R, Glotzer M. CSC-1: A subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J Cell Biol. 2003;161(2):229–36.

23. Schumacher JM, Golden A, Donovan PJ. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol. 1998;143(6):1635–46.

24. Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, et al. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol. 2001;11(23):1825–35.

25. Davis-Roca AC, Muscat CC, Wignall SM. Caenorhabditis elegans oocytes detect meiotic errors in the absence of canonical end-on kinetochore attachments. J Cell Biol. 2017;216(5):1243–53.

26. Mullen TJ, Wignall SM. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet. 2017;

27. Cahoon CK, Helm JM, Libuda DE. Synaptonemal complex central region proteins promote localization of pro-crossover factors to recombination events during caenorhabditis elegans meiosis. Genetics. 2019;213(2):395–409.

28. Nguyen H, Labella S, Silva N, Jantsch V, Zetka M. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet. 2018;14(10).

29. Zhang L, Köhler S, Rillo-Bohn R, Dernburg AF. A compartmentalized signaling network mediates crossover control in meiosis. Elife. 2018;7:e30789.

30. Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, et al. LAB-1 Targets PP1 and Restricts Aurora B Kinase upon Entrance into Meiosis to Promote Sister Chromatid Cohesion. PLoS Biol. 2012;10(8).

31. Howe M, McDonald KL, Albertson DG, Meyer BJ. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol. 2001;153(6):1227–38.

32. Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol. 2005;7(12):1148–55.

33. Hong Y, Sonneville R, Wang B, Scheidt V, Meier B, Woglar A, et al. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nat Commun. 2018;9(1).

34. Hong Y, Velkova M, Silva N, Jagut M, Scheidt V, Labib K, et al. The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genet. 2018;14(6).

35. Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient Crossover Maturation Underlies Elevated Aneuploidy in Human Female Meiosis. Cell. 2017;168(6):977–989.e17.

36. Ferrandiz N, Barroso C, Telecan O, Shao N, Kim HM, Testori S, et al. Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. Elegans oocyte meiosis. Nat Commun. 2018;9(1).

37. Albertson DG, Thomson JN. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosom Res. 1993;1(1):15–26.

38. Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosom Res. 2004;12(7):733–9.

39. Wendel JF, Greilhuber J, Leitch IJ, Doležel J. Plant genome diversity. Plant Genome Diversity. 2012. 1–279 p.

40. Melters DP, Paliulis L V., Korf IF, Chan SWL. Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosom Res. 2012;20(5):579–93.

41. Schvarzstein M, Wignall SM, Villeneuve AM. Coordinating cohesion, co-orientation, and congression during meiosis: Lessons from holocentric chromosomes. Genes Dev. 2010;24(3):219–28.

42. Altendorfer E, Láscarez-Lagunas LI, Nadarajan S, Mathieson I, Colaiácovo MP. Crossover Position Drives Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Curr Biol. 2020;30(7):1329–1338.e7.

43. Woglar A, Villeneuve AM. Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination. Cell. 2018;173(7):1678–1691.e16.

44. Chan KL, Palmai-Pallag T, Ying S, Hickson ID. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009;11(6):753–60.

45. Chan KL, North PS, Hickson ID. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 2007;26(14):3397–409.

46. Chan YW, Fugger K, West SC. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat Cell Biol. 2018;20(1):92–103.

47. Hong Y, Sonneville R, Agostinho A, Meier B, Wang B, Blow JJ, et al. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis. PLoS Genet. 2016;12(3).

48. McVey M, Andersen SL, Broze Y, Sekelsky J. Multiple functions of drosophila BLM helicase in maintenance of genome stability. Genetics. 2007;176(4):1979–92.

49. Schvarzstein M, Pattabiraman D, Libuda DE, Ramadugu A, Tam A, Martinez-Perez E, et al. DNA helicase HIM-6/BLM both promotes mutSγ-dependent crossovers and antagonizes mutSγ-independent interhomolog associations during Caenorhabditis elegans meiosis. Genetics. 2014;198(1):193–207.

50. Agostinho A, Meier B, Sonneville R, Jagut M, Woglar A, Blow J, et al. Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases. PLoS Genet. 2013;9(7).

51. Hughes SE, Hawley RS. Topoisomerase II Is Required for the Proper Separation of Heterochromatic Regions during Drosophila melanogaster Female Meiosis. PLoS Genet. 2014;10(10).

52. Cortes D, McNally K, Mains PE, McNally FJ. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. Elife. 2015;4:e06056.

53. Vargas E, McNally K, Friedman JA, Cortes DB, Wang DY, Korf IF, et al. Autosomal trisomy and triploidy are corrected during female meiosis in caenorhabditis elegans. Genetics. 2017;207(3):911–22.

54. Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, et al. Spindle asymmetry drives non-Mendelian chromosome segregation. Science (80-). 2017;358(6363):668–72.

55. Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, et al. FANCM limits meiotic crossovers. Science (80-). 2012;336(6088):1588–90.

56. Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, et al. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 2014;42(14):9087–95.

57. Munz P. An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics. 1994;137(3):701–7.

58. Strickland W. An analysis of interference in Aspergillus nidulans. Proc R Soc London Ser B, Biol Sci. 1957;149(934):82–101.

59. Youds JL, Mets DG, McIlwraith MJ, Martin JS, Ward JD, Oneil NJ, et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science (80-). 2010;327(5970):1254–8.

60. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MIR, et al. RTEL1 Maintains Genomic Stability by Suppressing Homologous Recombination. Cell. 2008;135(2):261–71.

61. Bilgir C, Dombecki CR, Chen PF, Villeneuve AM, Nabeshima K. Assembly of the Synaptonemal Complex Is a Highly Temperature-Sensitive Process That Is Supported by PGL-1 During Caenorhabditis elegans Meiosis. G3 Genes, Genomes, Genet. 2013;3(4):585–95.

62. MacQueen AJ, Colaiácovo MP, McDonald K, Villeneuve AM. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002;16(18):2428–42.

63. Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, et al. NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. Elife. 2015;4:e08649.

64. Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30(4):313–21.

65. Zetka MC, Kawasaki I, Strome S, Müller F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev. 1999;13(17):2258–70.

66. MacQueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF. Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell. 2005;123(6):1037–50.

67. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol. 2001;153(6):1209–25.

68. Wolff ID, Tran M V., Mullen TJ, Villeneuve AM, Wignall SM. Assembly of Caenorhabditis elegans acentrosomal spindles occurs without evident microtubuleorganizing centers and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1. Mol Biol Cell. 2016;27(20):3122–31.

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!