Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues


Autoři: Rebecca J. Androwski aff001;  Nadeem Asad aff002;  Janet G. Wood aff002;  Allison Hofer aff002;  Steven Locke aff002;  Cassandra M. Smith aff002;  Becky Rose aff002;  Nathan E. Schroeder aff001
Působiště autorů: Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America aff001;  Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America aff002
Vyšlo v časopise: Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues. PLoS Genet 16(9): e32767. doi:10.1371/journal.pgen.1009029
Kategorie: Research Article
doi: 10.1371/journal.pgen.1009029

Souhrn

Stress-induced changes to the dendritic architecture of neurons have been demonstrated in numerous mammalian and invertebrate systems. Remodeling of dendrites varies tremendously among neuron types. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover an identical receptive field during reproductive development. Using time-course imaging, we show that branching between these two neuron types is highly coordinated. Furthermore, we find that the IL2 and FLP arbors have a similar dendritic architecture and use an identical downstream effector complex to control branching; however, regulation of this complex differs between stress-induced IL2 branching and FLP branching during reproductive development. We demonstrate that the unfolded protein response (UPR) sensor IRE-1, required for localization of the complex in FLP branching, is dispensable for IL2 branching at standard cultivation temperatures. Exposure of ire-1 mutants to elevated temperatures results in defective IL2 branching, thereby demonstrating a previously unknown genotype by environment interaction within the UPR. We find that the FOXO homolog, DAF-16, is required cell-autonomously to control arborization during stress-induced arborization. Likewise, several aspects of the dauer formation pathway are necessary for the neuron to remodel, including the phosphatase PTEN/DAF-18 and Cytochrome P450/DAF-9. Finally, we find that the TOR associated protein, RAPTOR/DAF-15 regulates mutually exclusive branching of the IL2 and FLP dendrites. DAF-15 promotes IL2 branching during dauer and inhibits precocious FLP growth. Together, our results shed light on molecular processes that regulate stress-mediated remodeling of dendrites across neuron classes.

Klíčová slova:

Caenorhabditis elegans – Epidermis – Neuronal dendrites – Neurons – Phenotypes – Pheromones – Sensory neurons – Sensory perception


Zdroje

1. Popov VI, Bocharova LS. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience. 1992;48: 53–62. doi: 10.1016/0306-4522(92)90337-2 1584425

2. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531: 225–231. doi: 10.1016/0006-8993(90)90778-a 1705153

3. Schroeder NE, Androwski RJ, Rashid A, Lee H, Lee J, Barr MM. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/furin. Curr Biol. 2013;23: 1527–1535. doi: 10.1016/j.cub.2013.06.058 23932402

4. Vyas A, Mitra R, Rao BSS, Chattarji S. Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons. 2002;22: 6810–6818. doi: 20026655 12151561

5. Brunson KL, Kramár E, Lin B, Chen Y, Colgin LL, Yanagihara TK, et al. Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci. 2005;25: 9328–9338. doi: 10.1523/JNEUROSCI.2281-05.2005 16221841

6. Smith CJ, Watson JD, VanHoven MK, Colón-Ramos DA, Miller DM. Netrin (UNC-6) mediates dendritic self-avoidance. Nat Neurosci. 2012;15: 731–7. doi: 10.1038/nn.3065 22426253

7. Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG, Hall DH, Schafer WR, et al. C. elegans multi-dendritic sensory neurons: Morphology and function. Mol Cell Neurosci. 2011;46: 308–317. doi: 10.1016/j.mcn.2010.10.001 20971193

8. Sundararajan L, Stern J, Miller DM. Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans. Dev Biol. 2019;451: 53–67. doi: 10.1016/j.ydbio.2019.04.002 31004567

9. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77: 71–94. doi: 10.1002/cbic.200300625 4366476

10. Smith CJ, Watson JD, Spencer WC, O’Brien T, Cha B, Albeg A, et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol. 2010;345: 18–33. doi: 10.1016/j.ydbio.2010.05.502 20537990

11. Oren-Suissa M, Hall DH, Treinin M, Shemer G, Podbilewicz B. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science (80-). 2010;328: 1285–1288. doi: 10.1126/science.1189095 20448153

12. Golden JW, Riddle DL. The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Dev Biol. 1984;102: 368–378. doi: 10.1016/0012-1606(84)90201-x 6706004

13. Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science (80-). 1996;274: 1389–1391. doi: 10.1126/science.274.5291.1389 8910282

14. Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 2003;17: 844–858. doi: 10.1101/gad.1066503 12654727

15. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131: 3897–906. doi: 10.1242/dev.01255 15253933

16. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, et al. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997;389: 994–999. doi: 10.1038/40194 9353126

17. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an Insulin Receptor–Like Gene That Regulates Longevity and Diapause in Caenorhabditis elegans. Science (80-). 1997;777: 942–946. doi: 10.1126/science.277.5328.942 9252323

18. Kimura KD, Riddle DL, Ruvkun G. The C. Elegans DAF-2 insulin-like receptor is abundantly expressed in the nervous system and regulated by nutritional status. Cold Spring Harb Symp Quant Biol. 2011;76: 113–120. doi: 10.1101/sqb.2011.76.010660 22123849

19. Masse I, Molin L, Billaud M, Solari F. Lifespan and dauer regulation by tissue-specific activities of Caenorhabditis elegans DAF-18. Dev Biol. 2005;286: 91–101. doi: 10.1016/j.ydbio.2005.07.010 16153634

20. Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development. 2002;129: 221–31. 11782415

21. Nakamura S, Karalay Ö, Jäger PS, Horikawa M, Klein C, Nakamura K, et al. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun. 2016;7: 10944. doi: 10.1038/ncomms10944 27001890

22. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 2000;14: 1512–27. doi: 10.1101/GAD.14.12.1512 10859169

23. Ward S, Thomson N, White JG, Brenner S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans. J Comp Neurol. 1975;160: 313–337. doi: 10.1002/cne.901600305 1112927

24. Dong X, Chiu H, Park YJ, Zou W, Zou Y, Özkan E, et al. Precise regulation of the guidance receptor DMA-1 by KPC-1/furin instructs dendritic branching decisions. Elife. 2016;5. doi: 10.7554/eLife.11008 26974341

25. Salzberg Y, Ramirez-Suarez NJ, Bülow HE. The Proprotein Convertase KPC-1/Furin Controls Branching and Self-avoidance of Sensory Dendrites in Caenorhabditis elegans. PLoS Genet. 2014;10. doi: 10.1371/journal.pgen.1004657 25232734

26. Salzberg Y, Díaz-Balzac CA, Ramirez-Suarez NJ, Attreed M, Tecle E, Desbois M, et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell. 2013;155: 308. doi: 10.1016/j.cell.2013.08.058 24120132

27. Dong X, Liu OW, Howell AS, Shen K. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell. 2013;155: 296–307. doi: 10.1016/j.cell.2013.08.059 24120131

28. Zou W, Shen A, Dong X, Tugizova M, Xiang YK, Shen K. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans. Elife. 2016;5: 308–317. doi: 10.7554/eLife.18345 27705746

29. Wei X, Howell AS, Dong X, Taylor CA, Cooper RC, Zhang J, et al. The unfolded protein response is required for dendrite morphogenesis. Elife. 2015;4: e06963. doi: 10.7554/eLife.06963 26052671

30. Salzberg Y, Coleman AJ, Celestrin K, Cohen-Berkman M, Biederer T, Henis-Korenblit S, et al. Reduced Insulin/Insulin-like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. Garsin DA, editor. PLoS Genet. 2017;13: e1006579. doi: 10.1371/journal.pgen.1006579 28114319

31. Zou W, Yadav S, DeVault L, Nung Jan Y, Sherwood DR, Jan YN, et al. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization. Chisholm AD, editor. PLoS Genet. 2015;11: e1005484. doi: 10.1371/journal.pgen.1005484 26394140

32. Taylor CA, Yan J, Howell AS, Dong X, Shen K. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport. Chisholm AD, editor. PLoS Genet. 2015;11: e1005695. doi: 10.1371/journal.pgen.1005695 26633194

33. Safra M, Fickentscher R, Levi-Ferber M, Danino YM, Haviv-Chesner A, Hansen M, et al. The FOXO transcription factor DAF-16 bypasses ire-1 requirement to promote endoplasmic reticulum homeostasis. Cell Metab. 2014;20: 870–881. doi: 10.1016/j.cmet.2014.09.006 25448701

34. Liu OW, Shen K. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat Neurosci. 2012;15: 57–63. doi: 10.1038/nn.2978 22138642

35. Zou W, Dong X, Broederdorf TR, Shen A, Kramer DA, Shi R, et al. A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching. Dev Cell. 2018;45: 362–375.e3. doi: 10.1016/j.devcel.2018.04.008 29738713

36. Díaz-Balzac CA, Rahman M, Lá Zaro-Peñ MI, Aguirre-Chen C, Kaprielian Z, Bü Low Correspondence HE, et al. Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites. 2016 [cited 3 Jul 2017]. doi: 10.1016/j.cub.2016.07.008 27451901

37. Sarov M, Murray JI, Schanze K, Pozniakovski A, Niu W, Angermann K, et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell. 2012;150: 855–866. doi: 10.1016/j.cell.2012.08.001 22901814

38. Chattarji S, Tomar A, Suvrathan A, Ghosh S, Mostafizur Rahman M. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience. 2015;18. doi: 10.1038/nn.4115 26404711

39. Albert PS, Riddle DL. Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J Comp Neurol. 1983;219: 461–81. doi: 10.1002/cne.902190407 6643716

40. Procko C, Lu Y, Shaham S. Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development. 2011;138: 1371–1381. doi: 10.1242/dev.058305 21350017

41. Richardson CE, Yee CS, Shen K. A hormone receptor pathway cell-autonomously delays neuron morphological aging by suppressing endocytosis. PLOS Biol. 2019; 1–20. doi: 10.1371/journal.pbio.3000452 31589601

42. Stenmark H, Olkkonen VM. The Rab GTPases family. Genome Biol 2001 25. 1997;176: 1–85. doi: 10.1016/S0074-7696(08)61608-3

43. Golden JJ, Riddle DLD, Johnsen R, Albert PS, Pilgrim D, Riddle DLD. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science (80-). 1982;218: 578–580. doi: 10.1126/science.6896933 6896933

44. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16: 452–466. doi: 10.1101/gad.964702 11850408

45. Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, et al. Complementary Signaling Pathways Regulate the Unfolded Protein Response and Are Required for C. elegans Develoment. Cell. 2001;107: 893–903. doi: 10.1016/s0092-8674(01)00612-2 11779465

46. Tawe WN, Eschbach ML, Walter RD, Henkle-Dührsen K. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 1998;26: 1621–1627. doi: 10.1093/nar/26.7.1621 9512531

47. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King K V., Edgley ML, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998;150: 129–155. doi: 10.1139/z78-244 9725835

48. Vowels JJ, Thomas JH. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics. 1992;130: 105–123. Available: http://www.genetics.org/content/genetics/130/1/105.full.pdf 1732156

49. Gottlieb S, Ruvkun G. daf-2, daf-16 and daf-23: Genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics. 1994;137: 107–120. Available: https://www.genetics.org/content/genetics/137/1/107.full.pdf 8056303

50. Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell. 2003;115: 489–502. doi: 10.1016/s0092-8674(03)00889-4 14622602

51. Larsen PL, Albert PS, Riddle DL. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 1995;139: 1567–1583. Available: https://www.genetics.org/content/genetics/139/4/1567.full.pdf 7789761

52. Jia K, Albert PS, Riddle DL. A Caenorhabditis elegans type I TGF beta receptor can function in the absence of type II kinase to promote larval development. Development. 2002;129: 221–231. Available: http://www.ncbi.nlm.nih.gov/pubmed/10887089 11782415

53. Albert PS, Riddle DL. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol. 1988;126: 270–293. doi: 10.1016/0012-1606(88)90138-8 3350212

54. Ouellet J, Li S, Roy R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development. 2008;135: 2583–2592. doi: 10.1242/dev.012435 18599512

55. Shih P-YY, Lee JS, Sternberg PW. Genetic markers enable the verification and manipulation of the dauer entry decision. Dev Biol. 2019. doi: 10.1016/j.ydbio.2019.06.009 31242447

56. Koike-Kumagai M, Yasunaga K, Morikawa R, Kanamori T, Emoto K. The target of rapamycin complex 2 controls dendritic tiling of Drosophila sensory neurons through the Tricornered kinase signalling pathway. EMBO J. 2009;28: 3879–92. doi: 10.1038/emboj.2009.312 19875983

57. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci. 2004;24: 9760–9769. doi: 10.1523/JNEUROSCI.1427-04.2004 15525761

58. Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3′-kinase- Akt-mammalian target of rapamycin pathway. J Neurosci. 2005;25: 11300–11312. doi: 10.1523/JNEUROSCI.2270-05.2005 16339025

59. Liang X, Dong X, Moerman DG, Shen K, Wang X. Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C.elegans. Dev Cell. 2015;33: 388–400. doi: 10.1016/j.devcel.2015.03.010 25982673

60. Chen CH, Hsu HW, Chang YH, Pan CL. Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans. Dev Cell. 2019;48: 215–228.e5. doi: 10.1016/j.devcel.2018.10.028 30555000

61. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc London. 1986;314: 1–340. doi: 10.1098/rstb.1986.0056 22462104

62. Kulalert W, Kim DH. The unfolded protein response in a pair of sensory neurons promotes entry of C. elegans into dauer diapause. Curr Biol. 2013;23: 2540–2545. doi: 10.1016/j.cub.2013.10.058 24316205

63. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415: 92–96. doi: 10.1038/415092a 11780124

64. Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J. 2019;286: 379–398. doi: 10.1111/febs.14358 29239106

65. Baek J-H, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P. GRP78 Level Is Altered in the Brain, but Not in Plasma or Cerebrospinal Fluid in Parkinson’s Disease Patients. Front Neurosci. 2019;13: 1–12. doi: 10.3389/fnins.2019.00001 30740042

66. Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, Horner HT, et al. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. Plant J. 2016;88: 193–204. doi: 10.1111/tpj.13239 27304577

67. Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, HxL1, for controlling pathogenicity of cryptococcus neoformans. PLoS Pathog. 2011;7. doi: 10.1371/journal.ppat.1002177 21852949

68. Richardson CE, Kinkel S, Kim DH. Physiological IRE-1-XBP-1 and PEK-1 signaling in Caenorhabditis elegans larval development and immunity. PLoS Genet. 2011;7. doi: 10.1371/journal.pgen.1002391 22125500

69. Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. Wiley Interdisciplinary Reviews: Developmental Biology. John Wiley & Sons, Ltd (10.1111); 2017. p. e278. doi: 10.1002/wdev.278 28544390

70. Christensen R, de la Torre-Ubieta L, Bonni A, Colón-Ramos DA. A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development. 2011;138: 5257–5267. doi: 10.1242/dev.069062 22069193

71. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten Regulates Neuronal Arborization and Social Interaction in Mice. Neuron. 2006;50: 377–388. doi: 10.1016/j.neuron.2006.03.023 16675393

72. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13: 1075–1081. doi: 10.1038/nn.2603 20694004

73. Schroeder NE, Flatt KM. In vivo imaging of dauer-specific neuronal remodeling in C. elegans. J Vis Exp. 2014; 51834. doi: 10.3791/51834 25226440

74. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6: 343–345. doi: 10.1038/nmeth.1318 19363495

75. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991;10: 3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x 1935914

76. Anderson P. Chapter 2 Mutagenesis. 1995. pp. 31–58. doi: 10.1016/s0091-679x(08)61382-5

77. Sulston JE, Hodgkin JG. The nematode Caenorhabditis elegans. Science (80-). 1988;240: 1448–1453. doi: 10.1126/science.3287621 3287621


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Imunitní trombocytopenie (ITP) u dospělých pacientů
nový kurz
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais

White paper - jak vidíme optimální péči o zubní náhrady
Autoři: MUDr. Jindřich Charvát, CSc.

Hemofilie - série kurzů

Faktory ovlivňující léčbu levotyroxinem
Autoři:

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×