-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaSnf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response
Autoři: Tomoaki Mizuno aff001; Kei Muroi aff001; Kenji Irie aff001
Působiště autorů: Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan aff001
Vyšlo v časopise: Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet 16(9): e32767. doi:10.1371/journal.pgen.1009053
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009053Souhrn
Autophagy is a fundamental process responsible for degradation and recycling of intracellular contents. In the budding yeast, non-selective macroautophagy and microautophagy of the endoplasmic reticulum (ER) are caused by ER stress, the circumstance where aberrant proteins accumulate in the ER. The more recent study showed that protein aggregation in the ER initiates ER-selective macroautophagy, referred to as ER-phagy; however, the mechanisms by which ER stress induces ER-phagy have not been fully elucidated. Here, we show that the expression levels of ATG39, encoding an autophagy receptor specific for ER-phagy, are significantly increased under ER-stressed conditions. ATG39 upregulation in ER stress response is mediated by activation of its promoter, which is positively regulated by Snf1 AMP-activated protein kinase (AMPK) and negatively by Mig1 and Mig2 transcriptional repressors. In response to ER stress, Snf1 promotes nuclear export of Mig1 and Mig2. Our results suggest that during ER stress response, Snf1 mediates activation of the ATG39 promoter and consequently facilitates ER-phagy by negatively regulating Mig1 and Mig2.
Klíčová slova:
Autophagic cell death – Cellular stress responses – Endoplasmic reticulum – Endoplasmic reticulum stress response – Gene expression – Mutant strains – Phosphorylation – Saccharomyces cerevisiae
Zdroje
1. Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146 : 743–750. doi: 10.1093/jb/mvp166 19861400
2. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334 : 1081–1086. doi: 10.1126/science.1209038 22116877
3. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell. Biol. 2009;187 : 525–536. doi: 10.1083/jcb.200907074 19948500
4. Bonilla M, Cunningham KW. Mitogen-activated protein kinase stimulation of Ca2+ signaling is required for survival of endoplasmic reticulum stress in yeast. Mol. Biol. Cell. 2003;14 : 4296–4305. doi: 10.1091/mbc.e03-02-0113 14517337
5. Chen Y, Feldman DE, Deng C, Brown JA, De Giacomo AF, Gaw AF, et al. Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol. Cancer. Res. 2005;3 : 669–677. doi: 10.1158/1541-7786.MCR-05-0181 16380504
6. Babour A, Bicknell AA, Tourtellotte J, Niwa M. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell. 2010;142 : 256–269. doi: 10.1016/j.cell.2010.06.006 20619447
7. Bicknell AA, Tourtellotte J, Niwa M. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem. 2010;285 : 17545–17555. doi: 10.1074/jbc.M109.084681 20382742
8. Torres-Quiroz F, García-Marqués S, Coria R, Randez-Gil F, Prieto JA. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure. J Biol Chem. 2010;285 : 20088–20096. doi: 10.1074/jbc.M109.063578 20430884
9. Ferrer-Dalmau J, Randez-Gil F, Marquina M, Prieto JA, Casamayor A. Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J. 2015;468 : 33–47. doi: 10.1042/BJ20140734 25730376
10. Mizuno T, Masuda Y, Irie K. The Saccharomyces cerevisiae AMPK, Snf1, negatively regulates the Hog1 MAPK Pathway in ER stress response. PLoS Genet. 2015;11: e1005491. doi: 10.1371/journal.pgen.1005491 26394309
11. Kimura Y, Irie K, Mizuno T. Expression control of the AMPK regulatory subunit and its functional significance in yeast ER stress response. Sci Rep. 2017;7 : 46713. doi: 10.1038/srep46713 28429799
12. Mizuno T, Nakamura M, Irie K. Induction of Ptp2 and Cmp2 protein phosphatases is crucial for the adaptive response to ER stress in Saccharomyces cerevisiae. Sci Rep. 2018;8 : 13078. doi: 10.1038/s41598-018-31413-6 30166606
13. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 2006;281 : 30299–30304. doi: 10.1074/jbc.M607007200 16901900
14. Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell. Sci. 2014;127, 4078–4088. doi: 10.1242/jcs.154716 25052096
15. Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013;194 : 341–361. doi: 10.1534/genetics.112.149013 23733851
16. Ohsumi Y. Historical landmarks of autophagy research. Cell. Res. 2014;24 : 9–23 doi: 10.1038/cr.2013.169 24366340
17. Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell. 2009;17 : 87–97. doi: 10.1016/j.devcel.2009.06.013 19619494
18. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell. 2009;17; 98–109. doi: 10.1016/j.devcel.2009.06.014 19619495
19. Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO. J. 2012;31; 2852–2868. doi: 10.1038/emboj.2012.151 22643220
20. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015;522 : 359–362. doi: 10.1038/nature14506 26040717
21. Schäfer JA, Schessner JP, Bircham PW, Tsuji T, Funaya C, Pajonk O, et al. ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J. 2020;39: e102586. doi: 10.15252/embj.2019102586 31802527
22. Cui Y, Parashar S, Zahoor M, Needham PG, Mari M, Zhu M, et al. COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science. 2019;365 : 53–60. doi: 10.1126/science.aau9263 31273116
23. Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 2011;21 : 709–717. doi: 10.1016/j.tcb.2011.07.004 21900009
24. Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008;13 : 2408–2420. doi: 10.2741/2854 17981722
25. Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192 : 73–105. doi: 10.1534/genetics.111.135731 22964838
26. Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, et al. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol. 2003;13 : 1299–1305. doi: 10.1016/s0960-9822(03)00459-7 12906789
27. Lutfiyya LL, Johnston M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol. 1996;16 : 4790–4797. doi: 10.1128/mcb.16.9.4790 8756637
28. Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics. 2008;9: doi: 10.1186/1471-2164-9-601 19087243
29. Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994;14 : 1979–1985. doi: 10.1128/mcb.14.3.1979 8114729
30. Treitel MA, Kuchin S, Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18 : 6273–6280. doi: 10.1128/mcb.18.11.6273 9774644
31. Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol. 2014;34 : 4420–4435. doi: 10.1128/MCB.01089-14 25266663
32. Welter E, Thumm M, Krick R. Quantification of nonselective bulk autophagy in S. cerevisiae using Pgk1-GFP. Autophagy. 2010;6 : 794–797. doi: 10.4161/auto.6.6.12348 20523132
33. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;101 : 249–258. doi: 10.1016/s0092-8674(00)80835-1 10847680
34. Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB, Fasana E, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol. 2016;18 : 1173–1184. doi: 10.1038/ncb3423 27749824
35. Rousseau A, Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature. 2016;536 : 184–189. doi: 10.1038/nature18943 27462806
36. Aihara M, Jin X, Kurihara Y, Yoshida Y, Matsushima Y, Oku M, et al. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell. Sci. 2014;127 : 3184–3196. doi: 10.1242/jcs.153254 24838945
37. Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell. 2011;22 : 3206–3217. doi: 10.1091/mbc.E11-02-0145 21757540
38. Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, et al. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J. Cell. Biol. 2014;207 : 91–105. doi: 10.1083/jcb.201402128 25287303
39. Smith MD, Harley ME, Kemp AJ, Wills J, Lee M, Arends M, et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-Phagy and pancreatic ER proteostasis. Dev Cell. 2018;44 : 217–232. doi: 10.1016/j.devcel.2017.11.024 29290589
40. Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day MA, et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc. Natl. Acad. Sci. U. S. A. 2012;109 : 11206–11210. doi: 10.1073/pnas.1200313109 22733735
41. Jin M, He D, Backues SK, Freeberg MA, Liu X, Kim JK, et al. Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr. Biol. 2014;24 : 1314–1322. doi: 10.1016/j.cub.2014.04.048 24881874
42. Bernard A, Jin M, González-Rodríguez P, Füllgrabe J, Delorme-Axford E, Backues SK, et al. Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr. Biol. 2015;25 : 546–555. doi: 10.1016/j.cub.2014.12.049 25660547
43. Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat. Cell. Biol. 2015;17 : 930–942. doi: 10.1038/ncb3189 26098573
44. Sakamaki JI, Wilkinson S, Hahn M, Tasdemir N, O’Prey J, Clark W, et al. Bromodomain protein BRD4 Is a transcriptional repressor of autophagy and lysosomal function. Mol Cell. 2017;66 : 517–532. doi: 10.1016/j.molcel.2017.04.027 28525743
45. DeVit MJ, Johnston M. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol. 1999;9 : 1231–1241. doi: 10.1016/s0960-9822(99)80503-x 10556086
46. Papamichos-Chronakis M, Gligoris T, Tzamarias D. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep. 2004;5 : 368–372. doi: 10.1038/sj.embor.7400120 15031717
47. Kaiser CA, Adams A, Gottschling DE. Methods in yeast genetics. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY; 1994.
48. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14 : 953–961. doi: 10.1002/(SICI)1097-0061(199807)14 : 10<953::AID-YEA293>3.0.CO;2-U 9717241
Článek TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinomaČlánek Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 9- Eutanazie na žádost pacientů s demencí? Odborná polemika je stále živá
- „Jednohubky“ z klinického výzkumu – 2026/1
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
-
Všechny články tohoto čísla
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans
- Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock
- The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes
- PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning
- Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity
- A mega-analysis of expression quantitative trait loci in retinal tissue
- Genetic analysis of the modern Australian labradoodle dog breed reveals an excess of the poodle genome
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori
- The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression
- A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy
- Excess crossovers impede faithful meiotic chromosome segregation in C. elegans
- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression
- Candidate variants in TUB are associated with familial tremor
- Restriction on self-renewing asymmetric division is coupled to terminal asymmetric division in the Drosophila CNS
- Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities
- The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
- Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice
- TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma
- Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty
- Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD
- A nonsense variant in Rap Guanine Nucleotide Exchange Factor 5 (RAPGEF5) is associated with equine familial isolated hypoparathyroidism in Thoroughbred foals
- Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues
- Polygenic risk for autism spectrum disorder associates with anger recognition in a neurodevelopment-focused phenome-wide scan of unaffected youths from a population-based cohort
- Aldh inhibitor restores auditory function in a mouse model of human deafness
- AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana
- NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation
- Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase
- Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response
- Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon
- Correction: Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon
- Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons
- Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II
- Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání