#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

XXIX. Vývoj nových léčiv, farmakoekonomika, klinická farmacie v onkologii


Vyšlo v časopise: Klin Onkol 2020; 33(Supplementum - 2): 114-116
Kategorie: XXIX. Vývoj nových léčiv, farmakoekonomika, klinická farmacie v onkologii

Příprava, výroba a neregistrovaná radiofarmaka –⁠ nekonečný příběh?

Adam J.1, Pech L.2, Čepa A.3

1 RECAMO, MOÚ, Brno, 2 ÚJV Řež, a. s., Husinec, 3 Ústav nukleární medicíny, 1. LF UK a VFN v Praze

Východiska: Ačkoli je PET rychle a dynamicky se rozvíjejícím oborem (70% nárůst počtu scanerů v ČR od roku 2015), je zavádění nových PET radiofarmak do klinické praxe (nejen v ČR) provázeno překážkami odvozenými ze specifické povahy této skupiny látek, což vede k neoptimální dostupnosti inovativních PET radiofarmak pro pacienty. Příspěvek se v první části věnuje problematice zavádění inovativních radiofarmak do klinické praxe, odkrývá drobné legislativní nuance přípravy/výroby a použití nových radiofarmak, které je třeba smířlivě vyřešit společně se státní autoritou. V druhé části popisuje progresi situace od podzimu 2018 doposud. Cíl: Koordinovaná snaha nukleární obce se snaží v ČR najít cestu a právní rámec, jak neregistrovaná radiofarmaka v ČR využívat podobně jako v zahraničí. Dílčí snahy se týkají zejména úpravy podmínek specifických léčebných programů, případné akceptace správné radiofarmaceutické praxe (GRPP) –⁠ významné zejm. v případě generátorových radiofarmak –⁠ či usnadnění použití „klasických“ cyklotronových PET radiofarmak bez registrace, kde bylo nejnověji ze strany SÚKL navrženo řešení v podobě specifického léčebného programu s měkčími požadavky, než vyplývají z registrace; a to obzvláště v případech, kdy objektivní skutečnosti (primárně rozsah dostupné dokumentace k prekurzoru farmaka) plné vyhovění požadavkům registrace komplikují či znemožňují. Zvláštní podskupinou problematiky je příprava/výroba radiofarmak značených ultrakrátkými radionuklidy (13N, 15O), která jsou díky svým vlastnostem mimo legislativní a praktické použití v ČR. V příspěvku jsou zmíněny výstupy ze setkání, které v uplynulých letech v rámci problematiky proběhly, diskutovány již provedené legislativní změny a na konkrétních případech ilustrován dopad výše uvedených skutečností a navržená či realizovaná řešení. V závěru je evaluováno doposud dosažené a nastíněny možné další scénáře vývoje v této oblasti. Z hlediska rozvoje nukleární medicíny v ČR je nutností prosazovat principy translace nových typů radiofarmak do klinické praxe v přijatelných časových intervalech.

Výzkum a vývoj PET radiofarmak ve spolupráci MOÚ a ÚJV Řež, a. s. –⁠ současnost a budoucnost

Adam J.

RECAMO, MOÚ, Brno

Východiska: Metoda pozitronové emisní tomografie (PET) je rychle a dynamicky se rozvíjejícím oborem v ČR. Od roku 2015 zde došlo k 70% nárůstu počtu scanerů, v současnosti v ČR pracuje 17 PET/CT nebo PET/MRI zařízení na čtrnácti různých místech. Drtivou většinu vyšetření provádějí odborníci v nukleární medicíně pomocí základního radiofarmaka 18F-fluordeoxyglukózy (FDG), širokospektrálního metabolického markeru. Pro některé novotvary, diagnózy či orgány je ovšem FDG nevhodná, což je stimulem k používání jiných, specifičtějších radiofarmak. K povolení používání těchto radiofarmak v rutinní klinické praxi je ovšem nutno splnit požadavky na registraci léčiva či nově alespoň pro specifický léčebný program. To je často možné jen ve velmi úzké a koordinované spolupráci výrobce radiofarmaka a zdravotnického zařízení. ÚJV Řež, a. s., největší český výrobce PET radiofarmak, dlouhodobě spolupracuje s Masarykovým onkologickým ústavem na vývoji a implementaci nových PET radiofarmak do klinické praxe. Výsledkem této spolupráce je jedno nové registrované radiofarmakum v ČR a další před finalizací registrace. Cíl: Spolupráce MOÚ a ÚJV Řež historicky vzešla z vybudování druhého výrobního PET centra ÚJV Řež v areálu MOÚ. Postupem času byly identifikovány látky s potenciálem pro využívání a vylepšení diagnostiky různých novotvarů. První realizovanou spoluprací bylo klinické hodnocení přípravku 11C-methionin pro diagnostiku gliomů, provedené v letech 2012–2014 na šestnácti pacientech. Následovalo klinické hodnocení 18F-fluorocholinu pro diagnostiku karcinomu prostaty v letech 2015–2016. Díky administrativním důvodům byla registrace fluorocholinu úspěšně uzavřena v roce 2019, u methioninu byl podán specifický léčebný program paralelně s registrací, jejíž schválení se očekává v roce 2020. V současnosti disponuje ÚJV Řež robustní výrobní kapacitou a vybavením umožňujícím potenciálně výrobu několika radiofarmak. Ve spolupráci s MOÚ se tak plánují projekty zaměřené nejen na zavádění látek v okolních státech již používaných, jako tomu bylo u methioninu a cholinu, ale i na zapojení do struktur vyvíjejících zcela nové diagnostické látky. Spolupráce výrobců a medicínských zařízení demonstrovaná v minulých letech zde je pro možnost vývoje či implementace nových PET diagnostik do české klinické praxe nepostradatelná a neocenitelná.

Farmakokinetika a dávkování monoklonálních protilátek

Juřica J.

Úsek klinických hodnocení, MOÚ, Brno

Biologická léčiva v současné době umožňují léčit nebo zasáhnout do průběhu onemocnění, u kterých byla v minulosti farmakoterapie nemožná nebo jen omezeně účinná. Zasahují do patogeneze onemocnění a v mnohých případech se jedná o kauzální terapii. V mnoha ohledech jsou oproti „klasickým“ léčivům, malým molekulám, velmi rozdílná. Zásadní rozdíly jsou ve fyzikálně-chemických vlastnostech, farmakokinetice i farmakodynamice. Tyto rozdíly si vyžadují odlišné přístupy k jejich vývoji, výrobě, skladování, aplikaci, dávkování, a nakonec i k poregistračnímu hodnocení. Dávkování biologik, zejména monoklonálních protilátek (MAb), je řízeno jinými faktory než čistě hmotnostními, resp. povrchem těla nemocného, jako je tomu u malých molekul, „chemických“ léčiv. Jejich účinek ani tak nesouvisí s plazmatickou koncentrací, ale s vazbou MAb na cílové receptory –⁠ a ty nesouvisí s hmotností pacienta, ale s expresí receptorů a v případě protinádorových MAb s tzv. tumor load. Výskyt toxicity MAb také příliš nesouvisí s plazmatickými koncentracemi. Farmakokinetika MAb je v zásadě jiná než u malých molekul; MAb nejsou metabolizovány jako malé molekuly enzymy CYP, jejichž aktivita ve stáří klesá. Farmakokinetika není ani tolik ovlivněna úrovní glomerulární filtrace, ani jaterními funkcemi, interindividuální rozdíly v koncentracích mohou být způsobeny spíše rozdílnou distribucí (zavodněním atd.). MAb jsou metabolizovány intracelulárně peptidázami, lyzozomálními enzymy nebo likvidovány makrofágy a monocyty po endocytóze nebo internalizaci po interakci s povrchovým receptorem. Právě zde může docházet i k jinde těžko předpokládaným interakcím –⁠ imunosupresiva mohou prodloužit poločas MAb, protože zpomalují jejich rozpoznání a likvidaci makrofágy, monocyty, popř. internalizaci a likvidaci lyzozomálními enzymy.

Protinádorová somatobuněčná imunoterapie dendritickými buňkami

Pilátová K.1, Hlaváčková E.2, Selingerová I.3, Múdry P.4, Mazánek P.4, Fědorová L.5, Demlová R.6, Štěrba J.4, Valík D.5, Zdražilová Dubská L.5

1 Farmakologický ústav, LF MU, Brno; RECAMO, MOÚ, Brno, 2 Farmakologický ústav, LF MU, Brno; Klinika dětské onkologie, LF MU a FN Brno, 3 RECAMO, MOÚ, Brno, 4 Klinika dětské onkologie, LF MU a FN Brno, 5 Farmakologický ústav, LF MU, Brno; RECAMO, MOÚ, Brno, 6 Farmakologický ústav, LF MU, Brno

Protinádorovou somatobuněčnou imunoterapii na bázi dendritických buněk (DC) vyrábíme v rámci akademického klinického hodnocení fáze I/II „Kombinovaná protinádorová terapie s ex vivo manipulovanými dendritickými buňkami produkujícími interleukin-12 u dětských, adolescentních a mladých dospělých pacientů s progredujícími, relabujícími nebo primárně metastatickými malignitami vysokého rizika“. Výroba vakcíny z DC se skládá ze dvou fází: 1. výroba nádorového lyzátu z tumoru pacienta odebraného při chirurgickém zákroku; 2. kultivace DC z monocytů pacienta získaných leukaferézou, jež jsou pulzovány autologním nádorovým lyzátem. Výstupní kontrola kvality vyrobených DC zahrnuje stanovení viability, výtěžnosti, imunofenotypu, imunostimulačních vlastností (produkce IL-10 a IL-12, schopnost stimulovat alogenní a autologní T lymfocyty) a ověření neinfekčnosti (sterilita, nepřítomnost Mycoplazma spp.). Výroba vakcíny je však z pohledu výtěžnosti a imunobiologických vlastností DC velice variabilní a přibližně ve 30 % případů vyrobené DC nesplňují dané specifikace a nemohou být propuštěny pacientovi k aplikaci. Zaměřili jsme se tedy na: 1. klíčové aspekty, které by mohly mít nepříznivý vliv na výrobu vakcíny, tj. metody separace monocytů z leukaferetického produktu (elutriace vs. plastická adherence monocytů) a terapii předcházející leukaferéze; 2. markery predikující výsledek výroby, tj. parametry krevního obrazu pacienta před leukaferézou a parametry leukaferetického produktu. Metoda separace monocytů v našem případě neměla vliv na výtěžnost a imunobiologické vlastnosti DC, avšak určité kombinace protinádorové terapie měly negativní vliv jak na výtěžnost, tak na vlastnosti vyrobených DC. Například kombinace temozolomidu a irinotekanu byla asociována se sníženou maturací a imunostimulačními vlastnostmi DC a kombinace pazopanibu, topotekanu a vysokodávkovaného cyklofosfamidu byla asociována se sníženou diferenciací a imunostimulačními schopnostmi DC. S ohledem na parametry krevního obrazu a leukaferetického produktu jsme pozorovali, že vzájemně související parametry –⁠ nízký relativní počet lymfocytů a vysoký relativní počet neutrofilů v krevním obrazu a vysoký počet monocytů v leukaferetickém produktu –⁠ jsou spojeny s nepříznivě vysokou expresí CD14 na vyrobených buňkách. Zvýšený počet nezralých granulocytů v periferní krvi je pak asociován se sníženou schopností DC stimulovat alogenní T lymfocyty.

Práce byla podpořena projekty CZECRIN (LM2015090), RECAMO (LO1413), CZECRIN_4PATIENTY (Reg. No. CZ.02.1.01/0.0/0.0/16_013/0001826) a MZ ČR –⁠ RVO (MOÚ, 00209805).

Immune checkpoint inhibitory, irAEs a riziko infekcí

Rychlíčková J.

Farmakologický ústav, LF MU, Brno

Základní mechanizmus účinku inhibitorů imunitních kontrolních bodů (immune checkpoint inhibitorů –⁠ ICPI) spočívá v aktivaci blokované T-cytotoxické imunitní odpovědi vůči nádorovým buňkám. Zároveň může dojít k neadekvátní aktivaci imunitního systému vůči vlastním buňkám za vzniku tzv. immune-related adverse events (irAEs). Základní terapií je v tomto případě nasazení glukokortikoidů v dávce odpovídající stupni obtíží, dále použití steroidy šetřicích imunosupresiv a anti-TNF protilátek (nejčastěji infliximabu). Imunitní odpověď je modulována jednak základním onemocněním, jednak léčbou nasazenou pro řešení případných irAEs, ale ukazuje se i jistý přímý vliv ICPI. Publikována byla řada případů reaktivace latentní tuberkulózy u pacientů léčených ICPI bez současné léčby irAEs glukokortikoidy či jinými imunosupresivy. Krom reaktivace latentní tuberkulózy roste i riziko dalších oportunních infekcí –⁠ pneumocystové pneumonie, cytomegalovirových infekcí, plicní aspergilózy atd. Cíl: Upozornit na možnou souvislost reaktivace oportunních infekcí a léčby ICPI, rozbor možných mechanizmů a shrnutí adekvátních postupů prevence.

Současné trendy a pokroky v PET radiofarmacích v České republice

Řehák Z.1, Adam J.2, Kozáková Š.3, Vašina J.1, Budinský M.4, Hejnová R.5

1 Oddělení nukleární medicíny, MOÚ, Brno, 2 RECAMO, MOÚ, Brno, 3 Ústavní lékárna, MOÚ, Brno, 4 Úsek přípravy a kontroly radiofarmak, MOÚ, Brno, 5 Oddělení klinických hodnocení, MOÚ, Brno

Pozitronová emisní tomografie je neinvazivní diagnostická metoda zobrazující biodistribuci pozitronových radiofarmak v těle. První PET vyšetření bylo provedeno v Nemocnici Na Homolce v Praze již v roce 1999 s použitím 18F-fluorodeoxyglukózy (FDG), která byla dlouhou dobu jediným dostupným radiofarmakem. V dnešní době jsou všechny PET kamery v ČR jen hybridní (15× PET/CT a 2× PET/MR na celkem čtrnácti pracovištích PET) s pokrytím napříč celou republikou, chybí jen v Karlovarském, Libereckém a Pardubickém kraji (další nejbližší instalace). FDG je stále nejčastěji využívaným radiofarmakem. Vyšetření s tímto radiofarmakem lze využít u většiny nádorových onemocnění, ale také mimo onkologické indikace k detekci některých typů zánětů, lze lokalizovat i epileptický fokus v mozku nebo určit viabilitu myokardu. Druhým nejpoužívanějším radiofarmakem je 18F-fluorocholin (FCH), který lze využívat u pacientů s karcinomem prostaty, hepatocelulárním karcinomem, v neonkologické indikaci pak k detekci hyperfunkčních příštítných tělísek. Pro diagnostiku recidivy či diseminace u kurativně léčených pacientů s karcinomem prostaty lze využít vyšetření s 18F-fluciclovinem (FACBC), obě tato radiofarmaka se stala v ČR zcela rutinními. Superiorní pro diagnostiku karcinomu prostaty je však vyšetření s 68Ga-PSMA (dosud v ČR jen klinické hodnocení). 18F-fluorothymidin (FLT) je proliferační marker, který lze doplňkově využít i po FDG PET/CT vyšetření nebo jako radiofarmakum k zobrazování nádorů mozku (v této indikaci je však suboptimální). Pro zobrazování mozkových nádorů jsou vhodnější značené aminokyseliny, v ČR jsou praktické zkušenosti s použitím 11C methioninu (MET), 18F-fluoroDOPA (FDOPA) a 18F-fluoroetyltyrozínu (FET), většímu rozšíření brání absence registrace i úhrad. K detekci kostních ložisek se zvýšenou osteoblastickou aktivitou, a to nejen v onkologických indikacích, je vyžíván 18F-natriumfluorid (NaF). K odlišení ložisek hypoxie v nádoru od nekrózy se nově používá 18F-fluoromisononidazol (FMISO). Afinitu k depozitům beta-amyloidu v mozku mají tři využívaná radiofarmaka: 18F-fluorbetaben (FBB), 18F-flutemetamol (FMM) a 18F-fluorbetapir (FBP). Mezi nově využívané radiofarmakum patří 68Ga-DOTATOC (galiem značený DOTA-peptid) určené k vyšetřování pacientů s dobře diferencovanými gastroenteropankreatickými neuroendokrinními nádory. Obě galiová radiofarmaka (jak PSMA, tak i DOTATOC) jsou potenciálně využitelná i pro cílenou terapii v kombinaci s luteciem 177Lu či ytriem 90Y –⁠ tzv. teranostiku.


Štítky
Dětská onkologie Chirurgie všeobecná Onkologie
Článek Editorial

Článek vyšel v časopise

Klinická onkologie

Číslo Supplementum - 2

2020 Číslo Supplementum - 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Mepolizumab v reálné klinické praxi kurz
Mepolizumab v reálné klinické praxi
nový kurz
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#