#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Kombinovaný bioinformatický a literární přístup k identifikaci dlouhých nekódujících molekul RNA, které modulují signalizaci přes receptor vitaminu D u karcinomu prsu


Autoři: Kholghi Oskooei Vahid;  Ghafouri-Fard Soudeh;  Omrani Mir Davood
Působiště autorů: Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Vyšlo v časopise: Klin Onkol 2018; 31(4): 264-269
Kategorie: Přehled
doi: https://doi.org/10.14735/amko2018264

Souhrn

Úvod:
Bylo prokázáno, že dlouhé nekódující RNA (lncRNA) jako důležitá frakce lidského transkriptomu hrají zásadní roli při regulaci signálních drah, které se podílejí na karcinogenezi. Mezi nimi je signalizace receptoru vitaminu D (VDR), jejíž účast na různých nádorech vč. nádoru prsu (breast cancer –⁠ BC) je patrná. Navzdory přítomnosti několika důkazů účasti lncRNA, stejně jako signalizace VDR v patogenezi BC, žádná souhrnná studie nehodnotila vztah mezi dysregulací lncRNA a signalizací VDR u BC.

Cíl:
Zavést bioinformatický přístup k identifikaci lncRNA, které modulují signalizaci VDR u BC. Tento přístup zahrnuje koexpresní analýzu, in silico identifikaci lncRNAs, které jsou zaměřeny na VDR a literární vyhledávání. Závěr: Předpokládá se, že desítky lncRNA ovlivní signalizaci VDR. Mezi nimi jsou některé lncRNA, jako je MALAT1, který má významnou roli v patogenezi BC. Identifikace lncRNA, které ovlivňují expresi genu VDR, je možná pomocí in silico analýzy. Vzhledem k prominentní roli VDR v patogenezi BC a dostupnosti modulačních činidel VDR je hodnocení VDR signalizační dráhy a souvisejících sítí praktického významu a nástroje bioinformatiky by měly usnadnit tuto činnost.

Klíčová slova:
receptor vitaminu D –⁠ dlouhé nekódující molekuly RNA –⁠ koexprese –⁠ bioinformatika –⁠ receptor kalcitriolu –⁠ výpočetní biologie

Tento článek je výňatkem z práce Vahida Kholghi Oskooei z lékařské fakulty, Univerzity Shahid Beheshti (registrační číslo 46).

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdrženo: 17. 3. 2018

Accepted: 6. 5. 2018


Zdroje

1. Dianatpour M, Mehdipour P, Nayernia K et al. Expression of testis specific genes TSGA10, TEX101 and ODF3 in breast cancer. Iran Red Crescent Med J 2012; 14 (11): 722–726. doi: 10.5812/ircmj.3611.

2. Sarrafzadeh S, Geranpayeh L, Ghafouri-Fard S. Expression analysis of long non-coding PCAT-1in breast cancer. Int J Hematol Oncol Stem Cell Res 2017; 11 (3): 185–191.

3. Seifi-Alan M, Shamsi R, Ghafouri-Fard S et al. Expression analysis of two cancer-testis genes, FBXO39 and TDRD4, in breast cancer tissues and cell lines. Asian Pac J Cancer Prev 2014; 14 (11): 6625–6629.

4. Kazemi-Oula G, Ghafouri-Fard S, Mobasheri MB et al. Upregulation of RHOXF2 and ODF4 expression in breast cancer tissues. Cell J 2015; 17 (3): 471–477.

5. Ditsch N, Toth B, Mayr D et al. The Association between vitamin D receptor expression and prolonged overall survival in breast cancer. J Histochem Cytochem 2012; 60 (2): 121–129.

6. Al-Azhri J, Zhang YL, Bshara W et al. Tumor expression of vitamin D receptor and breast cancer histopathological characteristics and prognosis. Clin Cancer Res 2017; 23 (1): 97–103. doi: 10.1158/1078-0432.CCR-16-0075.

7. Almlof JC, Lundmark P, Lundmark A et al. Single nucleotide polymorphisms with cis-regulatory effects on long non-coding transcripts in human primary monocytes. PLoS One 2014; 9 (7): e102612. doi: 10.1371/journal.pone.0102612.

8. Ditsch N, Toth B, Mayr D et al. The association between vitamin D receptor expression and prolonged overall survival in breast cancer. J Histochem Cytochem 2012; 60 (2): 121–129. doi: 10.1369/0022155411429155.

9. Bikle DD, Jiang Y. The protective role of vitamin D signaling in non-melanoma skin cancer. Cancers 2013; 5 (4): 1426–1438. doi: 10.3390/cancers5041426.

10. Jiang YJ, Bikle DD. LncRNA: a new player in 1α, 25 (OH) 2 vitamin D3/VDR protection against skin cancer formation. Exp Dermatol 2014; 23 (3): 147–150. doi: 10.1111/exd.12341.

11. Dianatpour A, Ghafouri-Fard S. The role of long non coding RNAs in the repair of DNA double strand breaks. Int J Mol 2017; 6 (1): 1–12.

12. Dianatpour A, Ghafouri-Fard S. Long non coding RNA expression intersecting cancer and spermatogenesis: a systematic review. Asian Pac J Cancer Prev 2017; 18 (10): 2601–2610. doi: 10.22034/APJCP.2017.18.10.2601.

13. Nikpayam E, Soudyab M, Tasharrofi B et al. Expression analysis of long non-coding ATB and its putative target in breast cancer. Breast Dis 2017; 37 (1): 11–20. doi: 10.3233/BD-160264.

14. Sarrafzadeh S, Geranpayeh L, Tasharrofi B et al. Expression study and clinical correlations of MYC and CCAT2 in breast cancer patients. Iran Biomed J 2017; 21 (5): 303–311.

15. Iranpour M, Soudyab M, Geranpayeh L et al. Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol 2016; 37 (3): 2933–2940. doi: 10.1007/s13277-015-4135-2.

16. Soudyab M, Iranpour M, Ghafouri-Fard S. The role of long non-coding RNAs in breast cancer. Arch Iran Med 2016; 19 (7): 508–517. doi: 0161907/AIM.0011.

17. Nikpayam E, Tasharrofi B, Sarrafzadeh S et al. The role of long non-coding RNAs in ovarian cancer. Iranian biomedical journal 2017; 21 (1): 3–15. doi:

18. Tasharrofi B, Soudyab M, Nikpayam E et al. Comparative expression analysis of hypoxia-inducible factor-alpha and its natural occurring antisense in breast cancer tissues and adjacent noncancerous tissues. Cell Biochem Funct 2016; 34 (8): 572–578. doi: 10.1002/cbf.3230.

19. Collette J, Le Bourhis X, Adriaenssens E. Regulation of human breast cancer by the long non-coding RNA H19. Int J Mol Sci 2017; 18 (11). Pii: E2319. doi: 10.3390/ijms18112319.

20. Chen S, Bu D, Ma Y et al. H19 Overexpression induces resistance to 1, 25 (OH) 2D3 by targeting VDR through miR-675-5p in colon cancer cells. Neoplasia 2017; 19 (3): 226–236. doi: 10.1016/j.neo.2016.10.007.

21. Shamsi R, Seifi-Alan M, Behmanesh A et al. A bioinformatics approach for identification of miR-100 targets implicated in breast cancer. Cell Mol Biol 2017; 63 (10): 99–105. doi: 10.14715/cmb/2017.63.10.16.

22. Zhao Z, Bai J, Wu A et al. Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database 2015; 2015. pii: bav082. doi: 10.1093/database/bav082.

23. Jiang Q, Wang J, Wu X et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015; 43: D193–D196. doi: 10.1093/nar/gku1173.

24. Gao J, Aksoy BA, Dogrusoz U et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6 (269): pl1. doi: 10.1126/scisignal.2004088.

25. Forbes SA, Beare D, Boutselakis H et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017; 45 (D1): D777–D83. doi: 10.1093/nar/gkw1121.

26. Hou M, Tang X, Tian F et al. AnnoLnc: a web server for systematically annotating novel human lncRNAs. BMC Genomics 2016; 17 (1): 931. doi: 10.1186/s12864-016-3287-9.

27. Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 2012; 28 (15): 2062–2063. doi: 10.1093/bioinformatics/bts344.

28. Nikitin A, Egorov S, Daraselia N et al. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 2003; 19 (16): 2155–2157.

29. Conte F, Fiscon G, Chiara M et al. Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 2017; 12 (2): e0171661. doi: 10.1371/journal.pone.0171661.

30. Guo K, Yao J, Yu Q et al. The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumour Biol 2017; 39 (4): 1010428317699122. doi: 10.1177/1010428317699122.

31. Chen X, Gao G, Liu S et al. Long noncoding RNA PVT1 as a novel diagnostic biomarker and therapeutic target for melanoma. Biomed Res Int 2017; 2017 : 7038579. doi: 10.1155/2017/7038579.

32. Zhang XW, Bu P, Liu L et al. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun 2015; 462 (3): 227–232. doi: 10.1016/j.bbrc.2015.04.121.

33. Zhang J, Feng S, Su W et al. Overexpression of FAM83H-AS1 indicates poor patient survival and knockdown impairs cell proliferation and invasion via MET/EGFR signaling in lung cancer. Sci Rep 2017; 7 : 42819. doi: 10.1038/srep42819.

34. Yang L, Xu L, Wang Q et al. Dysregulation of long non-coding RNA profiles in human colorectal cancer and its association with overall survival. Oncol Lett 2016; 12 (5): 4068–4074. doi: 10.3892/ol.2016.5138.

35. Feng L, Houck JR, Lohavanichbutr P et al. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa. Oncotarget 2017; 8 (19): 31521–31531. doi: 10.18632/oncotarget.16358.

36. Li W, Li H, Zhang L et al. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 2017; 292 (14): 5801–5813. doi: 10.1074/jbc.M116.758508.

37. Wang Y, Zhou J, Xu YJ et al. Long non-coding RNA LINC00968 acts as oncogene in NSCLC by activating the Wnt signaling pathway. J Cell Physiol 2018; 233 (4): 3397–3406. doi: 10.1002/jcp.26186.

38. Huang G, Song H, Wang R et al. The relationship between RGS5 expression and cancer differentiation and metastasis in non-small cell lung cancer. J Surg Oncol 2012; 105 (4): 420–424. doi: 10.1002/jso.22033.

39. Hu M, Chen X, Zhang J et al. Over-expression of regulator of G protein signaling 5 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma cells. J Surg Oncol 2013; 108 (3): 192–196. doi: 10.1002/jso.23367.

40. Takenaka K, Chen BJ, Modesitt SC et al. The emerging role of long non-coding RNAs in endometrial cancer. Cancer Genet 2016; 209 (10): 445–455. doi: 10.1016/j.cancergen.2016.09.005.

41. Liu H, Li J, Koirala P et al. Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget 2016; 7 (15): 20584–20596. doi: 10.18632/oncotarget.7828.

42. Ye T, Ding W, Wang N et al. Long noncoding RNA linc00346 promotes the malignant phenotypes of bladder cancer. Biochem Biophys Res Commun 2017; 491 (1): 79–84. doi: 10.1016/j.bbrc.2017.07.045.

43. Zhang J, Fan D, Jian Z et al. Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One 2015; 10 (10): e0141042. doi: 10.1371/journal.pone.0141042.

44. Cabanski CR, White NM, Dang HX et al. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol 2015; 12 (6): 628–642. doi: 10.1080/15476286.2015.1038012.

45. Sun CC, Li SJ, Li G et al. Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Nucleic Acids 2016; 5 (11): e385. doi: 10.1038/mtna.2016.94.

46. Yan K, Tian J, Shi W et al. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and sponging miR-101-3p. Cell Physiol Biochem 2017; 42 (3): 999–1012. doi: 10.1159/000478682.

47. Birgani MT, Hajjari M, Shahrisa A et al. Long non-coding RNA SNHG6 as a potential biomarker for hepatocellular carcinoma. Pathol Oncol Res 2018; 24 (2): 329–337. doi: 10.1007/s12253-017-0241-3.

48. Jadaliha M, Zong X, Malakar P et al. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget 2016; 7 (26): 40418–40436. doi: 10.18632/oncotarget.9622.

49. Li J, Gao J, Tian W et al. Long non-coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the miR-1297. Cancer Cell Int 2017; 17 : 44. doi: 10.1186/s12935-017-0408-8.

50. Cai C, Huo Q, Wang X et al. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun 2017; 485 (2): 272–278. doi: 10.1016/j.bbrc.2017.02.094.

51. Christensen LL, True K, Hamilton MP net al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol 2016; 10 (8): 1266–1282. doi: 10.1016/j.molonc.2016.06.003.

52. Zhu Y, Yu M, Li Z et al. ncRAN, a newly identified long noncoding RNA, enhances human bladder tumor growth, invasion, and survival. Urology 2011; 77 (2): 510 e1–e5. doi: 10.1016/j.urology.2010.09.022.

53. Yu M, Ohira M, Li Y et al. High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 2009; 34 (4): 931–938.

54. Campbell MJ. Vitamin D and the RNA transcriptome: more than mRNA regulation. Front Physiol 2014; 5.

55. Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol 2014; 144 Pt A: 87–90. doi: 10.1016/j.jsbmb.2013.11.018.

56. Campbell MJ. Bioinformatic approaches to interrogating vitamin D receptor signaling. Mol Cell Endocrinol 2017; 453 : 3–13. doi: 10.1016/j.mce.2017.03.011.

57. Yu Y, Li L, Zheng Z et al. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med 2017; 21 (5): 955–967. doi: 10.1111/jcmm.13035.

58. Mittal MK, Myers JN, Misra S at al. Chaudhuri G. In vivo binding to and functional repression of the VDR gene promoter by SLUG in human breast cells. Biochem Biophys Res Commun 2008; 372 (1): 30–34. doi: 10.1016/j.bbrc.2008.04.187.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 4

2018 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#