#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vybrané genetické polymorfizmy asociované s hypoxií a multilékovou rezistencí u pacientů s monoklonálními gamapatiemi


Autoři: Almasi Martina 1;  Besse Lenka 2;  Brozova Lucie 3;  Jarkovsky Jiri 3;  Bezdekova Renata 1;  Pour Ludek 4;  Minarik Jiri 5;  Kessler Petr 6;  Pavlicek Petr 7;  Roziakova Lubica 8;  Penka Miroslav 1;  Hájek Roman 1,9;  Vasku Anna 10;  Sevcikova Sabina 1,11
Působiště autorů: Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic 1;  Department of Oncology and Hematology, Cantonal Hospital St. Gallen, Switzerland 2;  Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic 3;  Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine Masaryk University, Brno, Czech Republic 5 Department of Hematooncology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky 4;  Department of Hematology and Transfusion Medicine, Hospital Pelhrimov, Pelhřimov, Czech Republic 6;  Department for Internal Medicine and Haematology, 3rd Faculty of Medicine, Charles University in Prague and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic 7;  Department of Hematology and Transfusion Medicine, University Hospital, School of Medicine, Comenius University Bratislava, Slovak Republic 8;  Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic 9;  Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic 10;  Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic 11
Vyšlo v časopise: Klin Onkol 2018; 31(3): 213-229
Kategorie: Původní práce
doi: https://doi.org/10.14735/amko2018213

Souhrn

Východiska:
Přirozená reakce organizmu na hypoxii je regulována různými mechanizmy a transkripčními faktory, zahrnujícími hypoxií indukovatelné faktory (HIFs). Aktivace HIF-1α je u nádorových buněk spojována se zvýšenou expresí P-glykoproteinu a multilékovou rezistencí. V této retrospektivní analýze jsme sledovali kandidátní jednonukleotidové polymorfizmy (single-nucleotide polymorphisms –⁠ SNP) genů HIF-1α a HIF-1β a jejich spojení s rizikem vzniku onemocnění monoklonální gamapatie nejasného významu (monoclonal gammopathy of undetermined significance –⁠ MGUS) nebo mnohočetného myelomu (MM).

Soubor pacientů a metody:
Genotypy jednonukleotidových polymorfizmů spojovaných s hypoxií byly určovány pomocí real time polymerázové řetězové reakce alelické diskriminace u nezávislé skupiny pacientů s monoklonální gamapatií (MG) (275 pacientů s MM a 228 s MGUS) a u 219 kontrol bez nádorového onemocnění.

Výsledky:
Při porovnání pacientů s MM a kontrol jsme pozorovali příznivější vliv genotypu CG genu HIF-1β (rs2228099) oproti genotypu CC (OR 0,65; CI 0,45–0,95; p = 0,026). Obdobně i při zohlednění věku pacientů a jejich indexu tělesné hmotnosti byla signifikantně nižší šance (OR 0,55; p = 0,045) rozvoje onemocnění MM u genotypu CG oproti CC. Log-rank test potvrdil souvislost GT haplotypu (rs11549467, rs2057482) genu HIF-1α s lepším celkovým přežitím (medián 41,8 měsíce; (CI 35,1–48,5) u haplotypu „žádné GT“ a medián 93,8 měsíce (CI 31,3–156,4) u haplotypu „nejméně jeden GT“ (p = 0,0500). Dále byla zjištěna významná souvislost mezi jednonukleotidovými polymorfizmy v genu MDR1 a léčebným účinkem u 110 pacientů s MM léčených bortezomibem.

Závěr:
Naše studie ukázala možnou genetickou predispozici k riziku rozvoje MG a/nebo k léčebné odpovědi pacientů s MM, nicméně je třeba provést další studie k potvrzení naší počáteční analýzy.

Klíčová slova:
mnohočetný myelom –⁠ hypoxie –⁠ genotype –⁠ polymorfizmus –⁠ qPCR

Tato práce byla podpořena projektem MZ ČR FNBr, 65269705.

Autoři deklarují, že v souvislosti s předmětem nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdrženo: 19. 3. 2018

Přijato: 24. 4. 2018


Zdroje

1. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121 (5): 749–757.

2. Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008; 111 (6): 2962–2972. doi: 10.1182/blood-2007-10-078022.

3. Hajek R, Krejci M, Pour L et al. Multiple myeloma. Klin Onkol 2011; 24 Suppl: S10–S13.

4. Kyle RA, Buadi F, Rajkumar SV. Management of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Oncology (Williston Park) 2011; 25 (7): 578–586.

5. Wang GL, Jiang BH, Rue EA et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer reg-ulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92 (12): 5510–5514.

6. Martin SK, Diamond P, Gronthos S et al. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25 (10): 1533–1542. doi: 10.1038/leu.2011.122.

7. Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepatients, heterogeneity and plasticity of multiple myeloma. Br J Haematol 2013; 163 (5): 551–564. doi: 10.1111/bjh.12563.

8. Colla S, Storti P, Donofrio G et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138 (+) cells. Leukemia 2010; 24 (11): 1967–1970. doi: 10.1038/leu.2010.193.

9. Martin SK, Diamond P, Williams SA et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells.  Haematologica 2010; 95 (5): 776–784. doi: 10.3324/haematol.2009.015628.

10. Giatromanolaki A, Bai M, Margaritis D et al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 2010; 30 (7): 2831–2836.

11. Hu Y, Kirito K, Yoshida K et al. Inhibition of hypoxia-inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan. Mol Cancer Ther 2009; 8 (8): 2329–2338. doi: 10.1158/1535-7163.MCT-09-0150.

12. Borsi E, Perrone G, Terragna C et al. Hypoxia inducible factor-1 alpha as a therapeutic target in multiple myeloma. Oncotarget 2014; 5 (7): 1779–1792. doi: 10.18632/oncotarget.1736.

13. Ria R, Catacchio I, Berardi S et al. HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin Cancer Res 2014; 20 (4): 847–858. doi: 10.1158/1078-0432.CCR-13-1950.

14. Storti P, Bolzoni M, Donofrio G et al. Hypoxia-inducible factor (HIF) -1α suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia 2013; 27 (8): 1697–1706. doi: 10.1038/leu.2013.24.

15. Hu J, Van Valckenborgh E, Xu D et al. Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro. Mol Cancer Ther 2013; 12 (9): 1763–1773. doi: 10.1158/1535-7163.MCT-13-0123.

16. Doublier S, Belisario DC, Polimeni M et al. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the brest. BMC Cancer 2012; 12 : 4. doi: 10.1186/1471-2407-12-4.

17. Song X, Liu X, Chi W et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 2006; 58 (6): 776–784. doi: 10.1007/s00280-006-0224-7.

18. Zhou SF, Di YM, Chan E et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 2008; 9 (8): 738–784.

19. Saleun JP, Vicariot M, Deroff P et al. Monoclonal gammopathies in the adult population of Finistère, France. J Clin Pathol 1982; 35 (1): 63–68.

20. Bourguet CC, Grufferman S, Delzell E et al. Multiple myeloma and family history of cancer. A case-control study. Cancer 1985; 56 (8): 2133–2139.

21. Eriksson M, Hållberg B. Familial occurrence of hematologic malignancies and other diseases in multiple myeloma: a case-control study. Cancer Causes Control 1992; 3 (1): 63–67.

22. Brown LM, Linet MS, Greenberg RS et al. Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer 1999; 85 (11): 2385–2390.

23. Landgren O, Linet MS, McMaster ML et al. Familial characteristics of autoimmune and hematologic disorders in 8,406 multiple myeloma patients: a population-based case-control study. Int J Cancer 2006; 118 (12): 3095–3098. doi: 10.1002/ijc.21745.

24. Altieri A, Chen B, Bermejo JL et al. Familial risks and temporal incidence trends of multiple myeloma. Eur J Cancer 2006; 42 (11): 1661–1670. doi: 10.1016/j.ejca.2005.11.033.

25. Morgan G, Johnsen HE, Goldschmidt H et al. Myeloma Genetics International Consortium. Leuk Lymphoma 2012; 53 (5): 796–800. doi: 10.3109/10428194.2011.639881.

26. Almasi M, Sevcikova S, Svachova H et al. Polymorphisms contribution to the determination of significant risk of specific toxicities in multiple myeloma. Klin Okol 2011; 24 (suppl 1): S39–S42.

27. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68 (4): 978–989. doi: 10.1086/319501.

28. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Genet 2005; 76 (3): 449–462. doi: 10.1086/428594.

29. Warnes G, Gorjanc G, Leisch F. Man M (2012) genetics: Population Genetics. [online]. Available from: http: //CRAN.R-project.org/package=genetics.

30. Rajkumar SV, Kyle RA, Therneau TM et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005; 106 (3): 812–817. doi: 10.1182/blood-2005-03-1038.

31. Broderick P, Chubb D, Johnson DC et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet 2011; 44 (1): 58–61. doi: 10.1038/ng.993.

32. Enciso-Mora V, Broderick P, Ma Y et al. A genome-wide association study of Hodgkin‘s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet 2010; 42 (12): 1126–1130. doi: 10.1038/ng.696.

33. Crowther-Swanepoel D, Broderick P, Di Bernardo MC et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet 2010; 42 (2): 132–136. doi: 10.1038/ng.510.

34. Greenberg AJ, Lee AM, Serie DJ et al. Single-nucleotide polymorphism rs1052501 associated with monoclonal gammopathy of undetermined significance and multiple myeloma. Leukemia 2013; 27 (2): 515–516. doi: 10.1038/leu.2012.232.

35. Chubb D, Weinhold N, Broderick P et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet 2013; 45 (10): 1221–1225. doi: 10.1038/ng.2733.

36. Hu X, Fang Y, Zheng J et al. The association between HIF-1α polymorphism and cancer risk: a systematic review and meta-analysis. Tumour Biol 2014; 35 (2): 903–916. doi: 10.1007/s13277-013-1160-x.

37. Ruiz-Tovar J, Fernandez-Contreras ME, Martín-Perez E et al. Association of thymidylate synthase and hypoxia inducible factor-1alpha DNA polymorphisms with pancreatic cancer. Tumori 2012; 98 (3): 364–369. doi: 10.1700/1125.12406.

38. Wang X, Liu Y, Ren H et al. Polymorphisms in the hypoxia-inducible factor-1α gene confer susceptibility to pancreatic cancer. Cancer Biol Ther 2011; 12 (5): 383–387.

39. Liu J, Zhang HX 1790 G/A polymorphism, but not 1772 C/T polymorphism, is significantly associated with cancers: an update study. Gene 2013; 523 (1): 58–63. doi: 10.1016/j.gene.2013.03.129.

40. Fu SL, Miao J, Ding B et al. A polymorphism in the 3‘ untranslated region of Hypoxia-Inducible Factor-1 alpha confers an increased risk of cervical cancer in a Chinese population. Neoplasma 2013; 61 (1): 63–69. doi: 10.4149/neo_2014_002.

41. Barrett LMW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69 (21): 3613–34. doi: 10.1007/s00018-012-0990-9.

42. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes 2013; 2013 : 291546. doi: 10.1155/2013/291546.

43. Héron-Milhavet L, LeRoith D. Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem 2002; 277 (18): 15600–15606. doi: 10.1074/jbc.M111142200.

44. Wu Y, Yakar S, Zhao L et al. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 2002; 62 (4): 1030–1035.

45. Friedman GD, Herrinton LJ. Obesity and multiple myeloma. Cancer Causes Control 1994; 5 (5): 479–483.

46. Blair CK, Cerhan JR, Folsom AR et al. Anthropometric characteristics and risk of multiple myeloma. Epidemiology 2005; 16 (5): 691–694.

47. Cozen W, Gebregziabher M, Conti DV et al. Interleukin-6-related genotypes, body mass index, and risk of multiple myeloma and plasmacytoma. Cancer Epidemiol Biomarkers Prev 2006; 15 (11): 2285–2291. doi: 10.1158/1055-9965.EPI-06-0446.

48. Chiu BC, Gapstur SM, Greenland P et al. Body mass index, abnormal glucose metabolism, and mortality from hematopoietic cancer. Cancer Epidemiol Biomarkers Prev 2006; 15 (12): 2348–2354. doi: 10.1158/1055-9965.EPI-06-0007.

49. Khan MM, Mori M, Sakauchi F et al. Risk factors for multiple myeloma: evidence from the Japan Collaborative Cohort (JACC) study. Asian Pac J Cancer Prev 2006; 7 (4): 575–581.

50. Birmann BM, Giovannucci E, Rosner B et al. Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev 2007; 16 (7): 1474–1478. doi: 10.1158/1055-9965.EPI-07-0143.

51. Larsson SC, Wolk A. Body mass index and risk of multiple myeloma: a meta-analysis. Int J Cancer 2007; 121 (11): 2512–2516. doi: 10.1002/ijc.22968.

52. Lichtman MA. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 2010; 15 (10): 1083–1101. doi: 10.1634/theoncologist.2010-0206.

53. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Cancer 2011; 47 (11): 1606–1615. doi: 10.1016/j.ejca. 2011.01.020.

54. Hofmann JN, Moore SC, Lim U et al. Body mass index and physical activity at different ages and risk of multiple myeloma in the NIH-AARP diet and health study. Am J Epidemiol 2013; 177 (8): 776–786. doi: 10.1093/aje/kws295.

55. Buda G, Ricci D, Huang CC et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2010; 89 (11): 1133–1140. doi: 10.1007/s00277-010-0992-3.

56. Buda G, Maggini V, Galimberti S et al. MDR1 polymorphism influences the outcome of multiple myeloma patients. Br J Haematol 2007; 137 (5): 454–456. 10.1111/j.1365-2141.2007.06605.x.

57. Maggini V, Buda G, Martino A et al. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics 2008; 18 (5): 383–389. doi: 10.1097/FPC.0b013e3282f82297.

58. Jamroziak K, Balcerczak E, Calka K et al. Polymorphisms and haplotypes in the multidrug resistance 1 gene (MDR1/ABCB1) and risk of multiple myeloma. Leuk Res 2009; 33 (2): 332–335. doi: 10.1016/j.leukres.2008.06. 008.

59. Drain S, Catherwood MA, Orr N et al. ABCB1 (MDR1) rs1045642 is associated with increased overall survival in plasma cell myeloma. Leuk Lymphoma 2009; 50 (4): 566–570. doi: 10.1080/10428190902853144.

60. Drain S, Flannely L, Drake MB et al. Multidrug resistance gene expression and ABCB1 SNPs in plasma cell myeloma. Leuk Res 2011; 35 (11): 1457–1463. doi: 10.1016/j.leukres.2011.05.033.

61. Drain S, Catherwood MA, Bjourson AJ et al. Neither P-gp SNP variants, P-gp expression nor functional P-gp activity predicts MDR in a preliminary study of plasma cell myeloma. Cytometry B Clin Cytom 2012; 82 (4): 229–237. doi: 10.1002/cyto.b.21018.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 3

2018 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Mepolizumab v reálné klinické praxi kurz
Mepolizumab v reálné klinické praxi
nový kurz
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#