The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites

Autoři: Farah Aida Dahalan aff001;  Thomas S. Churcher aff002;  Nikolai Windbichler aff001;  Mara K. N. Lawniczak aff001
Působiště autorů: Imperial College London, South Kensington, United Kingdom aff001;  MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom aff002;  Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom aff003
Vyšlo v časopise: The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1008063
Kategorie: Research Article
doi: 10.1371/journal.ppat.1008063


Mating causes dramatic changes in female physiology, behaviour, and immunity in many insects, inducing oogenesis, oviposition, and refractoriness to further mating. Females from the Anopheles gambiae species complex typically mate only once in their lifetime during which they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid hormone 20-hydroxyecdysone. This hormone, which is also induced by blood-feeding, plays a major role in activating vitellogenesis for egg production. Here we show that female Anopheles coluzzii susceptibility to Plasmodium falciparum infection is significantly higher in mated females compared to virgins. We also find that mating status has a major impact on the midgut transcriptome, detectable only under sugar-fed conditions: once females have blood-fed, the transcriptional changes that are induced by mating are likely masked by the widespread effects of blood-feeding on gene expression. To determine whether increased susceptibility to parasites could be driven by the additional 20E that mated females receive from males, we mimicked mating by injecting virgin females with 20E, finding that these females are significantly more susceptible to human malaria parasites than virgin females injected with the control 20E carrier. Further RNAseq was carried out to examine whether the genes that change upon 20E injection in the midgut are similar to those that change upon mating. We find that 79 midgut-expressed genes are regulated in common by both mating and 20E, and 96% (n = 76) of these are regulated in the same direction (up vs down in 20E/mated). Together, these findings show that male Anopheles mosquitoes induce changes in the female midgut that can affect female susceptibility to P. falciparum. This implies that in nature, males might contribute to malaria transmission in previously unappreciated ways, and that vector control strategies that target males may have additional benefits towards reducing transmission.

Klíčová slova:

Blood – Gene expression – Malaria – Malarial parasites – Mosquitoes – Oocysts – Parasitic diseases – Plasmodium



2. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526: 207–211. doi: 10.1038/nature15535 26375008

3. World Health Organization. World Malaria Report 2011. 2011;

4. Rivero A, Vézilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 2010;6: e1001000. doi: 10.1371/journal.ppat.1001000 20700451

5. Karaa SU. Insecticides—Advances in Integrated Pest Management. InTech. 2012;

6. Sinka ME. Global Distribution of the Dominant Vector Species of Malaria. In: Manguin S, editor. Anopheles mosquitoes—New insights into malaria vectors. InTech; 2013.

7. Coetzee M, Hunt RH, Wilkerson R, Torre AD, Coulibaly MB, Besansky NJ. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619. doi: 10.11646/zootaxa.3619.3.2

8. Tripet F, Touré YT, Dolo G, Lanzaro GC. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003;68: 1–5.

9. Klowden MJ, Russell RC. Mating affects egg maturation in Anopheles gambiae Giles (Diptera: Culicidae). J Vector Ecol. 2004;29: 135–139. 15266750

10. Rogers DW, Whitten MMA, Thailayil J, Soichot J, Levashina EA, Catteruccia F. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci U S A. 2008;105: 19390–19395. doi: 10.1073/pnas.0809723105 19036921

11. Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, Morris HR, et al. Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol. 2009;7: e1000272. doi: 10.1371/journal.pbio.1000272 20027206

12. Gabrieli P, Kakani EG, Mitchell SN, Mameli E, Want EJ, Mariezcurrena Anton A, et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A. 2014;111: 16353–16358. doi: 10.1073/pnas.1410488111 25368171

13. Short SM, Lazzaro BP. Female and male genetic contributions to post-mating immune defence in female Drosophila melanogaster. Proc Biol Sci. 2010;277: 3649–3657. doi: 10.1098/rspb.2010.0937 20573620

14. Thailayil J, Gabrieli P, Caputo B, Bascuñán P, South A, Diabate A, et al. Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep. 2018;8: 6594. doi: 10.1038/s41598-018-24923-w 29700344

15. Hagedorn HH, O’Connor JD, Fuchs MS, Sage B, Schlaeger DA, Bohm MK. The ovary as a source of alpha-ecdysone in an adult mosquito. Proc Natl Acad Sci U S A. 1975;72: 3255–3259. doi: 10.1073/pnas.72.8.3255 1059110

16. Bai H, Gelman DB, Palli SR. Mode of action of methoprene in affecting female reproduction in the African malaria mosquito, Anopheles gambiae. Pest Manag Sci. 2010;66: 936–943. doi: 10.1002/ps.1962 20730984

17. Pondeville E, Maria A, Jacques J-C, Bourgouin C, Dauphin-Villemant C. Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc Natl Acad Sci U S A. 2008;105: 19631–19636. doi: 10.1073/pnas.0809264105 19060216

18. Raikhel AS, Miura K, Segraves WA. Nuclear Receptors in Mosquito Vitellogenesis. American Zoology. 1999;39: 722–735.

19. Swevers L, Drevet JR, Lunke MD, Iatrou K. The silkmoth homolog of the Drosophila ecdysone receptor (BI Isoform): Cloning and analysis of expression during follicular cell differentiation. Insect Biochem Mol Biol. 1995;25: 857–866. 7633470

20. Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol. 2013;11: e1001695. doi: 10.1371/journal.pbio.1001695 24204210

21. Shaw WR, Teodori E, Mitchell SN, Baldini F, Gabrieli P, Rogers DW, et al. Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in Anopheles gambiae. Proc Natl Acad Sci U S A. 2014;111: 5854–5859. doi: 10.1073/pnas.1401715111 24711401

22. Thailayil J, Magnusson K, Godfray HCJ, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences. National Acad Sciences; 2011;108: 13677–13681.

23. Mitchell SN, Kakani EG, South A, Howell PI, Waterhouse RM, Catteruccia F. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science. 2015;347: 985–988. doi: 10.1126/science.1259435 25722409

24. Pondeville E, Puchot N, Lang M, Cherrier F, Schaffner F, Dauphin-Villemant C, et al. Evolution of sexually-transferred steroids and mating-induced phenotypes in Anopheles mosquitoes. Sci Rep. 2019;9: 4669. doi: 10.1038/s41598-019-41094-4 30874601

25. Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci. 2008;275: 1675–1683. doi: 10.1098/rspb.2008.0139 18430646

26. Chagas AC, Ramirez JL, Jasinskiene N, James AA, Ribeiro JMC, Marinotti O, et al. Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 2014;111: 6946–6951. doi: 10.1073/pnas.1404179111 24778255

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [Internet]. bioRxiv. 2014. p. 002832. doi: 10.1101/002832

28. Zhou G, Kohlhepp P, Geiser D, Frasquillo MDC, Vazquez-Moreno L, Winzerling JJ. Fate of blood meal iron in mosquitoes. J Insect Physiol. 2007;53: 1169–1178. doi: 10.1016/j.jinsphys.2007.06.009 17689557

29. Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40: 443–474. doi: 10.1146/annurev.en.40.010195.002303 7810991

30. Sieber MH, Spradling AC. Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation. Curr Biol. 2015;25: 993–1004. doi: 10.1016/j.cub.2015.02.019 25802149

31. Reiff T, Jacobson J, Cognigni P, Antonello Z, Ballesta E, Tan KJ, et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife. 2015;4: e06930. doi: 10.7554/eLife.06930 26216039

32. Ribeiro C, Dickson BJ. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol. 2010;20: 1000–1005. doi: 10.1016/j.cub.2010.03.061 20471268

33. Vargas MA, Luo N, Yamaguchi A, Kapahi P. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol. 2010;20: 1006–1011. doi: 10.1016/j.cub.2010.04.009 20471266

34. Rono MK, Whitten MMA, Oulad-Abdelghani M, Levashina EA, Marois E. The Major Yolk Protein Vitellogenin Interferes with the Anti-Plasmodium Response in the Malaria Mosquito Anopheles gambiae. Schneider DS, editor. PLoS Biol. 2010;8: e1000434. doi: 10.1371/journal.pbio.1000434 20652016

35. Schwenke RA, Lazzaro BP, Wolfner MF. Reproduction-Immunity Trade-Offs in Insects. Annu Rev Entomol. 2016;61: 239–256. doi: 10.1146/annurev-ento-010715-023924 26667271

36. Bashir-Tanoli S, Tinsley MC. Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol. 2014;28: 1011–1019.

37. Schwenke RA, Lazzaro BP. Juvenile Hormone Suppresses Resistance to Infection in Mated Female Drosophila melanogaster. Curr Biol. 2017;27: 596–601. doi: 10.1016/j.cub.2017.01.004 28190728

38. Werling K, Shaw WR, Itoe MA, Westervelt KA, Marcenac P, Paton DG, et al. Steroid Hormone Function Controls Non-competitive Plasmodium Development in Anopheles. Cell. 2019;177: 315–325.e14. doi: 10.1016/j.cell.2019.02.036 30929905

39. McGraw LA, Clark AG, Wolfner MF. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics. 2008;179: 1395–1408. doi: 10.1534/genetics.108.086934 18562649

40. Childs LM, Cai FY, Kakani EG, Mitchell SN, Paton D, Gabrieli P, et al. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathog. 2016;12: e1006060. doi: 10.1371/journal.ppat.1006060 27977810

41. Diabate A, Tripet F. Targeting male mosquito mating behaviour for malaria control. Parasit Vectors. 2015;8: 347. doi: 10.1186/s13071-015-0961-8 26113015

42. Briegel H, Lea AO, Klowden MJ. Hemoglobinometry as a Method for Measuring Blood Meal Sizes of Mosquitoes (Diptera: Culicidae). J Med Entomol. Oxford University Press; 1979;15: 235–238.

43. Churcher TS, Blagborough AM, Delves M, Ramakrishnan C, Kapulu MC, Williams AR, et al. Measuring the blockade of malaria transmission—an analysis of the Standard Membrane Feeding Assay. Int J Parasitol. 2012;42: 1037–1044. doi: 10.1016/j.ijpara.2012.09.002 23023048

44. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36. doi: 10.1186/gb-2013-14-4-r36 23618408

45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923 22388286

46. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31: 166–169. doi: 10.1093/bioinformatics/btu638 25260700

47. Oliveros JC. Venny. An interactive tool for comparing lists with Venn’s diagrams. In: 2007.

48. Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22: 1600–1607. doi: 10.1093/bioinformatics/btl140 16606683

49. Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO [Internet]. 2009.

Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens

2019 Číslo 11

Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se