The importance of adherence in tuberculosis treatment clinical trials and its relevance in explanatory and pragmatic trials

Autoři: Andrew Vernon aff001;  Katherine Fielding aff002;  Rada Savic aff004;  Lori Dodd aff005;  Payam Nahid aff006
Působiště autorů: Clinical Research Branch, Division of TB Elimination, NCHHSTP, US Centers for Disease Control & Prevention, Atlanta, Georgia, United States of America aff001;  TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom aff002;  Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa aff003;  Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America aff004;  National Institute for Allergy and Infectious Disease, National Institutes of Health, Washington DC, United States of America aff005;  Division of Pulmonary and Critical Care Medicine, University of California, San Francisco at San Francisco General Hospital, San Francisco, California, United States of America aff006
Vyšlo v časopise: The importance of adherence in tuberculosis treatment clinical trials and its relevance in explanatory and pragmatic trials. PLoS Med 16(12): e1002884. doi:10.1371/journal.pmed.1002884
Kategorie: Collection Review
doi: 10.1371/journal.pmed.1002884


Andrew Vernon and co-authors discuss adherence to therapy and its measurement in tuberculosis treatment trials.

Klíčová slova:

Clinical trials – Drug adherence – Drug metabolism – Drug screening – Ingestion – Pharmacokinetics – Tuberculosis – Urine


1. Tuberculosis Chemotherapy Centre. A concurrent comparison of home and sanatorium treatment of pulmonary tuberculosis in South India. Bull World Health Organ. 1959;21(1):51–144. 20604054

2. Fox W. Whither Short Course Chemotherapy. Brit J Dis Chest 1981; 75:331. doi: 10.1016/0007-0971(81)90022-x 7030377

3. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999 Oct;3(10 Suppl 2):S231–79.

4. Lienhardt C, Nahid P. Advances in clinical trial design for development of new TB treatments: A call for innovation. PLoS Med. 2019 Mar 22; 16(3):e1002769. doi: 10.1371/journal.pmed.1002769 30901322

5. Kent PW, Fox W, Miller AB, Nunn AJ, Tall R, Mitchison DA. The therapy of pulmonary tuberculosis in Kenya: a comparison of the results achieved in controlled clinical trials with those achieved by the routine treatment services. Tubercle. 1970 Mar; 51(1):24–38. doi: 10.1016/0041-3879(70)90125-x 4099826

6. Coronary Drug Project Research Group. Influence of adherence to treatment and response of cholesterol on mortality in the coronary drug project. N Engl J Med. 1980 Oct 30; 303(18):1038–41. doi: 10.1056/NEJM198010303031804 6999345

7. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014 Oct 23;371(17):1577–87. doi: 10.1056/NEJMoa1407426 25196020

8. Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014 Oct 23;371(17):1588–98. doi: 10.1056/NEJMoa1315817 25337748

9. Controlled Clinical Trial Of 4 Short-Course Regimens Of Chemotherapy (Three 6-Month And One I-Month) For Pulmonary Tuberculosis East and Central African/British Medical Research Council Fifth Collaborative Study First Report. Tubercle 1983; 64:153–166. doi: 10.1016/0041-3879(83)90011-9 6356538

10. NYC Bureau of Tuberculosis Control. Clinical Policies and Protocols, Bureau of Tuberculosis Control New York City Department of Health and Mental Hygiene. 4th ed. March 2008: p. 66.

11. Imperial MZ, Nahid P, Phillips PPJ, Davies GR, Fielding K, Hanna D, et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat Med. 2018 Nov;24(11):1708–1715. doi: 10.1038/s41591-018-0224-2 30397355

12. Menzies R, Rocher I, Vissandjee B. Factors associated with compliance in treatment of tuberculosis. Tuber Lung Dis. 1993;74:32–37. doi: 10.1016/0962-8479(93)90066-7 8495018

13. Blaschke TGF, Osterberg L, Vrijens B, Urquhart J. Adherence to Medications: Insights Arising from Studies on the Unreliable Link Between Prescribed and Actual Drug Dosing Histories. Ann Rev Pharmacol Toxicol. 2012; 52:275–301.

14. Sumartojo E. When tuberculosis treatment fails: a social behavorial account of patient adherence. Am Rev Respir Dis. 1993; 147:1311–1320. doi: 10.1164/ajrccm/147.5.1311 8484650

15. Stagg HR, Lewis JJ, Liu X, DP Chin, Huan S, Fielding KL, et al. How do tuberculosis patients really take their treatment? A detailed quantitative approach [Abstract PS04-443-25]. IJTLD 2018: 22; 11 S171.

16. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016 Oct 1;63(7):e147–e195. doi: 10.1093/cid/ciw376 27516382

17. Mave V, Kinikar A, Kagal A, Nimkar S, Koli H, Khwaja S, et al. Isoniazid concentrations in hair and plasma area-under-the-curve exposure among children with tuberculosis. PLoS ONE. 2017 Dec 7;12(12):e0189101. doi: 10.1371/journal.pone.0189101 29216273

18. Alipanah N, Jarlsberg L, Miller C, Linh NN, Falzon D, Jaramillo E, et al. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLoS Med. 2018 Jul 3;15(7):e1002595. doi: 10.1371/journal.pmed.1002595 29969463

19. Subbaraman R, de Mondesert L, Musiimenta A, Pai M, Mayer KH, Thomas BE, et al. Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and research priorities. BMJ Glob Health. 2018 Oct 11; 3(5):e001018. doi: 10.1136/bmjgh-2018-001018 30364330

20. Ngwatu BK, Nsengiyumva NP, Oxlade O, Mappin-Kasirer B, Nguyen NL, Jaramillo E, et al. Collaborative group on the impact of digital technologies on TB. The impact of digital health technologies on tuberculosis treatment: a systematic review. Eur Respir J. 2018 Jan 11; 51(1). pii: 1701596. doi: 10.1183/13993003.01596-2017 29326332

21. Broomhead S, Mars M. Retrospective return on investment analysis of an electronic treatment adherence device piloted in the Northern Cape Province. Telemed J E Health. 2012 Jan-Feb;18(1):24–31. doi: 10.1089/tmj.2011.0143 22150713

22. Liu X, Lewis JJ, Zhang H, Lu W, Zhang S, Zheng G, et al. Effectiveness of Electronic Reminders to Improve Medication Adherence in Tuberculosis Patients: A Cluster-Randomised Trial. PLoS Med. 2015 Sep 15;12(9):e1001876. doi: 10.1371/journal.pmed.1001876 26372470

23. Huan S, Chen R, Liu X, Ou X, Jiang S, Zhao Y, et al. Operational feasibility of medication monitors in monitoring treatment adherence among patients. Chin J Antituberculosis. 2012; 34:419–424.

24. Thomas B, Kumar V, Chiranjeevi M, Ramachandran G, Murugesan P, Khandelwale AS, et al. Evaluating the accuracy of 99DOTS, a cellphone-based strategy for monitoring TB treatment adherence [Abstract PS18-588-26]. In: 49th Union World Conference on Lung Health, 2018 Oct 26, The Hague, The Netherlands.

25. Story A, Aldridge RW, Smith CM, Garber E, Hall J, Ferenando G, et al. Smartphone-enabled video-observed versus directly observed treatment for tuberculosis: a multicentre, analyst-blinded, randomised, controlled superiority trial. Lancet. 2019 Mar 23;393(10177):1216–1224. doi: 10.1016/S0140-6736(18)32993-3 Epub 2019 Feb 21. 30799062

26. Lienhardt C, Nahid P, Imperial M (rapporteurs). Report of the Technical Consultation on Advances in Clinical Trial Design for Development of New TB Treatments, Glion-sur-Montreux, Switzerland, 14–16 March 2018. Geneva: World Health Organization; 2018 (WHO/CDS/TB/2018.17).

27. Story A, Garfein RS, Hayward A, Rusovich V, Dadu A, Soltan V, et al. Monitoring Therapy Compliance of Tuberculosis Patients by using Video-Enabled Electronic Devices. Emerg Infect Dis. 2016 Mar;22(3):538–40. doi: 10.3201/eid2203.151620 26891363

28. Garfein RS, Liu L, Cuevas-Mota J, Collins K, Muñoz F, Catanzaro DG, et al. Tuberculosis Treatment Monitoring by Video Directly Observed Therapy in 5 Health Districts, California, USA. Emerg Infect Dis. 2018 Oct; 24(10):1806–1815. doi: 10.3201/eid2410.180459 30226154

29. Browne SH, Peloquin C, Santillo F, Haubrich R, Muttera L, Moser K, et al. Digitizing Medicines for Remote Capture of Oral Medication Adherence Using Co-encapsulation. Clin Pharmacol Ther. 2018 Mar; 103(3):502–510. doi: 10.1002/cpt.760 28597911

30. Belknap R, Holland D, Feng PJ, Millet JP, Caylà JA, Martinson NA, et al. Self-administered Versus Directly Observed Once-Weekly Isoniazid and Rifapentine Treatment of Latent Tuberculosis Infection: A Randomized Trial. Ann Intern Med. 2017 Nov 21;167(10):689–697. doi: 10.7326/M17-1150 29114781

31. Lienhardt C, Ogden JA. Tuberculosis control in resource-poor countries: have we reached the limits of the universal paradigm? Trop Med Int Health 2004;9:833–841. doi: 10.1111/j.1365-3156.2004.01273.x 15228495

32. Karumbi J, Garner P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev. 2015 May 29; (5):CD003343. doi: 10.1002/14651858.CD003343.pub4 26022367

33. Yoeli E, Rathauser J, Bhanot SP, Kimenye MK, Mailu E, Masini E, et al. Digital health Support in Tuberculosis Treatment. N Engl J Med 2019; 381:986–7. doi: 10.1056/NEJMc1806550 31483974

34. Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG; CONSORT Group. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA. 2012 Dec 26; 308(24):2594–604. doi: 10.1001/jama.2012.87802 23268518

35. World Health Organization. Target regimen profiles for TB treatment: candidates: rifampicin-susceptible, rifampicin-resistant and pan-TB treatment regimens. WHO/HTM/TB/2016.16. Geneva: WHO; 2016.

36. Weis SE, Slocum PC, Blais FX, King B, Nunn M, Matney GB, et al. The effect of directly observed therapy on the rates of drug resistance and relapse in tuberculosis. N Engl J Med. 1994 Apr 28;330(17):1179–84. doi: 10.1056/NEJM199404283301702 8139628

37. Moonan PK, Quitugua TN, Pogoda JM, Woo G, Drewyer G, Sahbazian B, et al. Does directly observed therapy (DOT) reduce drug resistant tuberculosis? BMC Public Health. 2011 Jan 7; 11:19. doi: 10.1186/1471-2458-11-19 21214913

38. Rockwood N, Abdullahi LH, Wilkinson RJ, Meintjes G. Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis. PLoS ONE. 2015 Sep 25; 10(9):e0139017. doi: 10.1371/journal.pone.0139017 26406228

39. Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis. 1998 Jan; 2(1):10–5.

40. Cegielski JP, Kurbatova E, van der Walt M, Brand J, Ershova J, Tupasi T, et al. Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clin Infect Dis. 2016 Feb 15; 62(4):418–430. doi: 10.1093/cid/civ910 Epub 2015 Oct 27. 26508515

Interní lékařství

Článek vyšel v časopise

PLOS Medicine

2019 Číslo 12

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Co je dobré vědět o IPF
nový kurz

Nová éra v léčbě migrény
Autoři: MUDr. Eva Medová, MUDr. Tomáš Nežádal, Ph.D.

Imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Význam nutraceutik u kardiovaskulárních onemocnění

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais

Všechny kurzy
Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!