#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vývoj formulace antistresových pastilek připravených lisováním s využitím frakčního faktoriálního designu Latin cube a přístupu ANOVA


Autoři: Oleksii Yakovenko 1;  Tetiana Kolisnyk 1;  Lena Ruban 1;  Natalia Fil 2
Působiště autorů: Department of Industrial Technology of Drugs, National University of Pharmacy, Ukraine 1;  Department of Automation and Computer-Integrated Technologies, Kharkiv National Automobile and Highway University, Ukraine 2
Vyšlo v časopise: Čes. slov. Farm., 2021; 70, 66-78
Kategorie: Původní práce
doi: https://doi.org/10.5817/CSF2021-2-66

Souhrn

Cílem práce bylo vyvinout antistresové pastilky obsahující 100 mg glycinu a 250 mg magnesium-citrátu získané metodou přímého lisování. Aby bylo možné zvolit optimální složení pomocných látek poskytující dostatečné kvalitativní vlastnosti tabletoviny, mechanickou pevnost tablet a jejich odolnost a pomalé rozpouštění v ústech, bylo připraveno a testováno 27 experimentálních formulací podle frakčního faktoriálního designu latinských čtverců. Pomocné látky použité ve studii byly: Mannogem® EZ, Cellactose® 80 a GalenIQ™ 721 (plniva); Plasdone™ S-630, Kollidon® 90 F a Avicel® PH-101 (suchá pojiva); Metolose® 90SH-4000SR a klovatina guar (gelotvorné látky); PRUV®, Neusilin® US2 a Compritol® 888 CG ATO (antifrakční pomocné látky). Byly zkoumány následující parametry: sypná hustota, Carrův index, oděr, pevnost a doba rozpadavosti in vitro. Pro statistické zpracování byl použit přístup ANOVA, který umožnil odhalit jednotlivé vlivy každé použité pomocné látky a několik interakčních účinků pozorovaných u množství excipientů použitých v této studii. Isomalt (GalenIQ™ 721), kopovidon (Plasdone™ S-630) a glycerylbehenát (Compritol® 888 CG ATO) byly vybrány pro začlenění do konečné formulace lisovaných pastilek.

Klíčová slova:

lisované pastilky – glycin – magnesium-citrát – aktivita chránící proti stresu – vývoj formulace – návrh experimentu – analýza rozptylu


Zdroje
  1. Zhang H., Zhang J., Streisand J. B. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet. 2002; 41(9), 661–680.
  2. Council of Europe. European Pharmacopoeia, 10th edition, Strasbourg: Council of Europe, 2019.
  3. Ashraf M., Sayeed V. A. Considerations in developing sublingual tablets – an overview. Pharm. Technol. 2014; 38(11), 38–47.
  4. Dawson D. V., Drake D. R., Hill J. R., Brogden K. A., Fischer C. L., Wertz P. W. Organization, barrier function and antimicrobial lipids of the oral mucosa. Int. J. Cosmet. Sci. 2013; 35(3), 220–223.
  5. Squier C. A. The permeability of oral mucosa. Crit. Rev. Oral. Biol. Med. 1991; 2(1), 13–32.
  6. Shinkar D. M, Dhake A. S, Setty C. M. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J. Pharm. Sci. Technol. 2012; 66(5), 466–500.
  7. Fonseca-Santos B., Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater Sci. Eng. C Mater Biol. Appl. 2018; 86, 129–143.
  8. Maheshwari R., Jain V., Ansari R., Mahajan S. C., Joshi G. A review on lozenges. Br. Biomed. Bull. 2013; 1, 35–43.
  9. Majekodunmi S. O. A review on lozenges. American Journal of Medicine and Medical Sciences 2015; 5(2), 99–104.
  10. Uvnäs-Moberg K., Prime D. K. Oxytocin effects in mothers and infants during breastfeeding. Infant. 2013; 9(6), 201–206.
  11. Uvnäs-Moberg K., Handlin L., Petersson M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 2015; 5, 1529.
  12. Guzmán Y. F., Tronson N. C., Jovasevic V., Sato K., Guedea A. L., Mizukami H., Nishimori K., Radulovic J. Fear-enhancing effects of septal oxytocin receptors. Nat. Neurosci. 2013; 16(9), 1185–1187.
  13. Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V. S., Gallhofer B., Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 2005; 25(49), 11489–11493.
  14. Gundersen R. Y., Vaagenes P., Breivik T., Fonnum F., Opstad P. K. Glycine – an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol. Scand. 2005; 49, 1108–1116.
  15. Petrat F., Boengler K., Schulz R., de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br. J. Pharmacol. 2012; 165(7), 2059–2072.
  16. Kawai N., Sakai N., Okuro M., Karakawa S., Tsuneyoshi Y., Kawasaki N., Takeda T., Bannai M., Nishino S. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology 2015; 40(6), 1405–1416.
  17. Bannai M., Kawai N. New therapeutic strategy for amino acid medicine: glycine improves the quality of sleep. J. Pharmacol. Sci. 2012; 118(2), 145–148.
  18. Gusev E. I., Skvortsova V. I., Dambinova S. A., Raevskiy K. S., Alekseev A. A., Bashkatova V. G., Kovalenko A. V., Kudrin V. S., Yakovleva E. V. Neuroprotective effects of glycine for therapy of acute ischaemic stroke. Cerebrovasc. Dis. 2000; 10(1), 49–60.
  19. El Hafidi M., Pérez I., Baños G. Is glycine effective against elevated blood pressure? Curr. Opin. Clin. Nutr. Metab. Care 2006; 9(1), 26–31.
  20. Imtiaz S., Ikram H., Ayaz M., Qadir M. I., Muhammad S. A. Effect of glycine: Studying memory and behavioral changes in mice. Pak. J. Pharm. Sci. 2018; 31(5), 1943–1949.
  21. Razak M. A., Begum P. S., Viswanath B., Rajagopal S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid Med. Cell Longev. 2017; 2017, 1716701.
  22. Yakovenko O., Ruban O., Devyatkina N., Devyatkina T. Study of the stress-protective effect of the combination of glycine with magnesium citrate. Norwegian Journal of development of the International Science 2020; 48, 52–58.
  23. Sartori S. B., Whittle N., Hetzenauer A., Singewald N. Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology 2012; 62(1), 304–312.
  24. Tarasov E. A., Blinov D. V., Zimovina U. V., Sandakova E. A. Magnesium deficiency and stress: Issues of their relationship, diagnostic tests, and approaches to therapy. Ter. Arkh. 2015; 87(9), 114–122. Russian.
  25. Hroshovyi T. A., Martsenyuk V. P., Kucherenko L. I., Vronska L. V., Huryeyeva S. M. Mathematical planning of experiment in pharmacy. Ternopil, Ukraine: Ternopil State Medical University 2008. Ukrainian.
  26. Singh B., Kumar R., Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit. Rev. Ther. Drug Carrier Syst. 2005; 22(1), 27–105.
  27. Dennison T. J., Smith J., Hofmann M. P., Bland C. E., Badhan R. K., Al-Khattawi A., Mohammed A. R. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating. PLoS One 2016; 11(8), e0157267.
  28. Politis S. N., Colombo P., Colombo G., Rekkas D. M. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm. 2017; 43(6), 889–901.
  29. Fukuda I. M., Pinto C. F. F., Moreira C. S., Saviano A. M., Lourenço F. R. Design of Experiments (DoE) applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018; 54(Special), e01006.
  30. Saydam M., Takka S. Development and in vitro evaluation of pH-independent release matrix tablet of weakly acidic drug valsartan using quality by design tools. Drug Dev. Ind. Pharm. 2018; 44(12), 1905–1917.
  31. Wang Q., Wong C. H., Chan H. Y. E., Lee W. Y., Zuo Z. Statistical Design of Experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int. J. Pharm. 2018; 539(1–2), 50–57.
  32. Tietz K., Gutknecht S. I., Klein S. Bioequivalence of locally acting lozenges: Evaluation of critical in vivo parameters and first steps towards a bio-predictive in vitro test method. Eur. J. Pharm. Biopharm. 2018; 123, 71–83.
  33. Ruban O., Pidpruzhnykov Y., Kolisnyk T. Excipient risk assessment: possible approaches to assessing the risk associated with excipient function. J. Pharm. Investig. 2018; 48, 421–429.
  34. Hancock B. C., Colvin J. T., Mullarney M. P., Zinchuk A. V. The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablets. Pharm Technol. 2003; 27(4), 64–80.
  35. Pandeya A., Puri V. M. Relationships between tablet physical quality parameters and granulated powder properties: feasibility study. Particul. Sci. Technol. 2012; 30(5), 482–496.
  36. Sarraguça M. C., Cruz A. V., Soares S. O., Amaral H. R., Costa P. C., Lopes J. A. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy. J. Pharm. Biomed. Anal. 2010; 52, 484–492.
  37. Paul S., Sun C. C. Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures. Pharm. Res. 2017; 34, 2901–2909.
Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 2

2021 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#