Vliv zinečnatých a kademnatých iontů na růst a produkci kumarinů v suspenzní kultuře Angelica archangelica L.
Autoři:
Tomáš Siatka; Marie Kašparová; Jiřina Spilková
Působiště autorů:
Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Pharmacognosy
Vyšlo v časopise:
Čes. slov. Farm., 2012; 61, 261-266
Kategorie:
Původní práce
Souhrn
Rostlinná buňka může reagovat na nadbytek těžkých kovů ve svém prostředí různými mechanismy, včetně zvýšené biosyntézy sekundárních metabolitů. V této práci byly testovány zinečnaté (0 až 1500 μM) a kademnaté (0 až 100 μM) ionty jako potenciální elicitory produkce kumarinů v suspenzních kulturách anděliky lékařské. Navíc byla posuzována toxicita obou kovů hodnocením jejich účinku na buněčný růst (charakterizován čerstvou a suchou hmotností biomasy na konci čtrnáctidenní kultivace). Bylo zjištěno, že čerstvá hmotnost nebyla ovlivněna zinkem do koncentrace 150 μM u kultur ve tmě a 300 μM na světle. Potom klesala s rostoucí hladinou zinku. Zinek v koncentraci 1500 μM ji snížil v kulturách rostoucích ve tmě o 54 %, za světla o 24 %. Suchá hmota byla ovlivněna podobným způsobem. Zinek v koncentraci 1500 μM redukoval suchou hmotnost při kultivaci ve tmě o 30 %, na světle o 20 %. Kademnaté ionty neovlivnily čerstvou a suchou hmotnost buněk u kultur ve tmě do koncentrace 10 μM, na světle do 50 μM. Toxické koncentrace kadmia jsou o řád nižší než u zinku. Kadmium v koncentraci 50 μM snížilo čerstvou hmotnost buněk o 66 %, suchou o 59 % v kulturách ve tmě. Kadmium v koncentraci 100 μM redukovalo čerstvou hmotnost buněk o 40 %, suchou o 44 % v kulturách na světle. Zinečnaté ani kademnaté ionty nezvýšily produkci kumarinů.
Klíčová slova:
Angelica archangelica L. • suspenzní kultura • růst • kumariny • zinek • kadmium • elicitace • světelné podmínky • sekvenční injekční analýza
Zdroje
1. Jenkins T., Bovi A., Edwards R. Plants: biofactories for a sustainable future? Phil. Trans. R. Soc. A 2011; 369, 1826–1839.
2. Dvořáková M., Valterová I., Vaněk T. Monoterpeny v rostlinách. Chem. Listy 2011; 105, 839–845.
3. Hussain M. S., Fareed S., Ansari S., Rahman M. A., Ahmad I. Z., Saeed M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied. Sci. 2012; 4, 10–20.
4. Kolewe M. E., Gaurav V., Roberts S. C. Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol. Pharmaceut. 2008; 5, 243–256.
5. Zhao J, Davis L. C., Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005; 23, 283–333.
6. Mithöfer A., Schulze B., Boland W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 2004; 566, 1–5.
7. Kašparová M., Dušek J. Effect of biotic elicitation on the production of anthraglycosides by the tissue culture of Rheum palmatum L. Čes. slov. Farm. 1999; 48, 132–135.
8. Zhao J. L., Zhou L. G., Wu J. Y. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl. Microbiol. Biotechnol. 2010; 87, 137–144.
9. Yendo A. C. A., de Costa F., Gosmann G., Fett-Neto A. G. Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol. Biotechnol. 2010; 46, 94–104.
10. Bhagwath S. G., Hjortsø M. A. Statistical analysis of elicitation strategies for thiarubrine A production in hairy root cultures of Ambrosia artemisiifolia. J. Biotechnol. 2000; 80, 159–167.
11. Kombrink E., Hahlbrock K. Dependence of the level of phytoalexin and enzyme-induction by fungal elicitor on the growth stage of Petroselinum crispum cell cultures. Plant Cell Rep. 1985; 4, 277–280.
12. Möhle B., Heller W., Wellmann E.: UV-induced biosynthesis of quercetin 3-O-ββ-D-glucuronide in dill cell cultures. Phytochemistry 1985; 24, 465–467.
13. Reichling J., Merkel B. Elicitor-induced formation coumarin derivatives in suspension cultures of Pimpinella anisum. Planta Med. 1993; 59, 187–188.
14. Abe Y., Sawada A., Momose T., Sasaki N., Kawahara N., Kamakura H., Goda Y., Ozeki Y. Structure of an anthocyanin-anthocyanin dimer molecule in anthocyanin-producing cells of a carrot suspension culture. Tetrahedron Lett. 2008; 49, 7330–7333.
15. Staniszewska I., Królicka A., Maliński E., Łojkowska E., Szafranek J. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb. Tech. 2003; 33, 565–568.
16. Koulman A., Kubbinga M. E., Batterman S., Woerdenbag H. J., Pras N., Woolley J. G., Quax W. J. A phytochemical study of lignans in whole plants and cell suspension cultures of Anthriscus sylvestris. Planta Med. 2003; 69, 733–738.
17. Ishikawa A., Kitamura Y., Ozeki Y., Itoh Y., Yamada A., Watanabe M. Post-stress metabolism involves umbelliferone production in anthocyanin-producing and non-producing cells of Glehnia littoralis suspension cultures. J. Plant Physiol. 2005; 162, 703–710.
18. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962; 15, 473–497.
19. Siatka T., Sklenářová H., Kašparová M., Solich P. Effects of mercury(II) chloride on production of coumarins in Angelica archangelica L. cell suspension cultures. Chem. Listy 2011; 105, 367–370.
20. Memon A. R., Schröder P. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 2009; 16, 162–175.
21. Yadav S. K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010; 76, 167–179.
22. Źróbek-Sokolnik A., Asard H., Górska-Koplińska K., Górecki R. J. Cadmium and zinc-mediated oxidative burst in tobacco BY-2 cell suspension cultures. Acta Physiol. Plant. 2009; 31, 43–49.
23. Padmavathiamma P. K, Li L. Y. Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut. 2007; 184, 105–126.
24. Hu Y. T., Ming F., Chen W. W., Yan J. Y., Xu Z. Y., Li G. X., Xu C. Y., Yang J. L., Zheng S. J. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLOS one 2012; 7, e38535.
25. Vera-Estrella R., Miranda-Vergara M. C., Barkla B. J. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae). Planta 2009; 229, 977–986.
26. Li T., Xu Z., Han X., Yang X., Sparks D. L. Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc. Chemosphere 2012; 88, 570–576.
27. Pan X. W., Shi Y. Y., Liu X., Gao X., Lu Y. T. Influence of inorganic microelements on the production of camptothecin with suspension cultures of Camptotheca acuminata. Plant Growth Regul. 2004; 44, 59–63.
28. Ch B., Rao K., Gandi S., Giri A. Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre. World J. Microbiol. Biotechnol. 2012; 28, 741–747.
29. Yousefzadi M., Sharifi M., Behmanesh M., Ghasempour A., Moyano E., Palazon J. The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol. Biochem, 2012; 56, 41–46.
30. Chan L. K., Koay S. S., Boey P. L., Bhatt A. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol. Res. 2010; 43, 127–135.
31. Muschitz A., Faugeron C., Morvan H. Response of cultured tomato cells subjected to excess zinc: role of cell wall in zinc compartmentation. Acta Physiol. Plant. 2009; 31, 1197–1204.
32. Savitha B. C., Thimmaraju R., Bhagyalakshmi N., Ravishankar G. A. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem. 2006; 41, 50–60.
33. Trejo-Tapia G., Jimenez-Aparicio A., Rodriguez-Monroy M., De Jesus-Sanchez A., Gutierrez-Lopez G. Influence of cobalt and other microelements on the production of betalains and the growth of suspension cultures of Beta vulgaris. Plant Cell Tiss. Org. Cult. 2001; 67, 19–23.
34. Chavan S. P., Lokhande V. H., Nitnaware K. M., Nikam T. D. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl. Microbiol. Biotechnol. 2011; 89, 1701–1707.
35. Lecky R., Hook I., Sheridan H. Enhancement of dihydrosanguinarine production in suspension cultures of Papaver somniferum, I. Medium modifications. J. Nat. Prod. 1992; 55, 1513–1517.
36. Kim O. T., Kim M. Y., Hong M. H., Ahn J. C, Hwang B. Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Rep. 2004; 23, 339–344.
37. Babula P., Ryant P., Adam V., Zehnalek J., Havel L., Kizek R. The role of sulphur in cadmium(II) ions detoxification demonstrated in in vitro model: Dionaea muscipula Ell. Environ. Chem. Lett. 2009; 7, 353–361.
38. Gratão P. L., Pompeu G. B., Capaldi F. R., Vitorello V. A., Lea P. J., Azevedo R. A. Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss. Organ Cult. 2008; 94, 73–83.
39. Zheng Z., Wu M. Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci. 2004; 166, 507–514.
40. Balážová A., Blanáriková V., Bilka, F., Bilková A., Kiňová Sepová H. The effect of three different elicitors on sanguinarine production in suspension cultures of a low-morphine variety of the opium poppy (Papaver somniferum L.). Čes. slov. Farm. 2011; 60, 237–340.
41. Li D. D., Zhou D. M. Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. Ecotox. Environ. Safe. 2012; 79, 264–271.
42. Sanaeiostovar A. Khoshgoftarmanesh A. H. Shariatmadari H., Afyuni, M., Schulin R. Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes J. Agron. Crop Sci. 2012; 198, 276–285.
43. Hao X. Z., Zhou D. M., Li D. D., Jiang P. Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedoshere 2012; 22, 631–639.
44. Martin S. R., Llugany M., Barcelo J., Poschenrieder C. Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biol. Plant. 2012; 56, 729–734.
45. Dhankhar R., Sainger P. A., Sainger M. Phytoextraction of zinc: physiological and molecular mechanism. Soil Sediment Contam. 2012; 21, 115–133.
46. Najmanova J., Neumannova E., Leonhardt T., Zitka O., Kizek R., Macek T., Mackova, M., Kotrba P. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind. Crop Prod. 2012; 36, 536–542.
47. Remans T., Opdenakker K., Guisez Y., Carleer R., Schat H., Vangronsveld J., Cuypers A. Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ. Exp. Bot. 2012; 84, 61–71.
48. Verbruggen N., Hermans C., Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 2009; 181, 759–776.
49. Zenk M. H. Heavy metal detoxification in higher plants – a review. Gene 1996; 179, 21–30.
50. Rascioa N., Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011; 180, 169–181.
Štítky
Farmacie FarmakologieČlánek vyšel v časopise
Česká a slovenská farmacie
2012 Číslo 6
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Skotská studie upřesnila zdravotní benefity aktivního cestování za prací a studiem
Nejčtenější v tomto čísle
- Hodnocení obsahové stejnoměrnosti tablet s nízkým obsahem léčivé látky s úzkým terapeutickým indexem
- Za doc. DrPh. PhMr. Jozefom Hegerom
- Analýza farmaceutické péče při dispenzaci léčiva orlistat v režimu OTC
- POKYNY PRO AUTORY ČASOPISU ČESKÁ A SLOVENSKÁ FARMACIE