#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Broad dengue neutralization in mosquitoes expressing an engineered antibody


Autoři: Anna Buchman aff001;  Stephanie Gamez aff001;  Ming Li aff001;  Igor Antoshechkin aff002;  Hsing-Han Li aff003;  Hsin-Wei Wang aff004;  Chun-Hong Chen aff004;  Melissa J. Klein aff006;  Jean-Bernard Duchemin aff006;  James E. Crowe, Jr. aff007;  Prasad N. Paradkar aff006;  Omar S. Akbari aff001
Působiště autorů: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America aff001;  Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America aff002;  Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan aff003;  National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan aff004;  National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan aff005;  CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia aff006;  Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America aff007;  Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America aff008;  Tata Institute for Genetics and Society-UCSD, La Jolla, California, United States of America aff009
Vyšlo v časopise: Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog 16(1): e1008103. doi:10.1371/journal.ppat.1008103
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008103

Souhrn

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.

Klíčová slova:

Antibodies – Blood – Dengue virus – Genetic engineering – Larvae – Mosquitoes – Plasmid construction – Saliva


Zdroje

1. Murrell S, Wu S-C, Butler M. Review of dengue virus and the development of a vaccine. Biotechnol Adv. 2011;29: 239–247. doi: 10.1016/j.biotechadv.2010.11.008 21146601

2. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Armed Forces Med J India. 2015;71: 67–70.

3. Whitehorn J. Dengue Fever Viruses. eLS. John Wiley & Sons, Ltd; 2001.

4. Rajapakse S. Dengue shock. J Emerg Trauma Shock. 2011;4: 120–127. doi: 10.4103/0974-2700.76835 21633580

5. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014;22: 138–146. doi: 10.1016/j.tim.2013.12.011 24468533

6. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496: 504–507. doi: 10.1038/nature12060 23563266

7. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6: e1760. doi: 10.1371/journal.pntd.0001760 22880140

8. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis. 2016;16: 935–941. doi: 10.1016/S1473-3099(16)00146-8 27091092

9. Selck FW, Adalja AA, Boddie CR. An estimate of the global health care and lost productivity costs of dengue. Vector Borne Zoonotic Dis. 2014;14: 824–826. doi: 10.1089/vbz.2013.1528 25409275

10. World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. World Health Organization; 2009.

11. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med. 2015;373: 1195–1206. doi: 10.1056/NEJMoa1506223 26214039

12. Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHJM, Chotpitayasunondh T, Chua MN, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014;384: 1358–1365. doi: 10.1016/S0140-6736(14)61060-6 25018116

13. Dengue vaccine: WHO position paper–July 2016. Wkly Epidemiol Rec. 2016;91: 349–364. 27476189

14. Dans AL, Dans LF, Lansang MAD, Silvestre MAA, Guyatt GH. Controversy and debate on dengue vaccine series-paper 1: review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs. J Clin Epidemiol. 2018;95: 137–139. doi: 10.1016/j.jclinepi.2017.11.019 29180056

15. Hadinegoro SRS, Arredondo-García JL, Capeding MR, Pallardy S, Noriega F, Bouckenooghe A. Controversy and debate on dengue vaccine series-paper 2: response to review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs. J Clin Epidemiol. 2018;95: 140–141. doi: 10.1016/j.jclinepi.2017.12.024 29306062

16. Gibbons RV, Vaughn DW. Dengue: an escalating problem. BMJ. 2002;324: 1563–1566. doi: 10.1136/bmj.324.7353.1563 12089096

17. Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28: 114–121. doi: 10.1016/j.pt.2012.01.001 22300806

18. Gloria-Soria A, Brown JE, Kramer V, Hardstone Yoshimizu M, Powell JR. Origin of the dengue fever mosquito, Aedes aegypti, in California. PLoS Negl Trop Dis. 2014;8: e3029. doi: 10.1371/journal.pntd.0003029 25077804

19. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4: e08347. doi: 10.7554/eLife.08347 26126267

20. Carvalho MS, Honorio NA, Garcia LMT, Carvalho LC de S. Aedes ægypti control in urban areas: A systemic approach to a complex dynamic. PLoS Negl Trop Dis. 2017;11: e0005632. doi: 10.1371/journal.pntd.0005632 28749942

21. Haug CJ, Kieny MP, Murgue B. The Zika Challenge. N Engl J Med. 2016;374: 1801–1803. doi: 10.1056/NEJMp1603734 27028782

22. Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67: 1218–1230. doi: 10.1111/evo.12063 23550770

23. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11: e0005625. doi: 10.1371/journal.pntd.0005625 28727779

24. Yakob L, Funk S, Camacho A, Brady O, Edmunds WJ. Aedes aegypti Control Through Modernized, Integrated Vector Management. PLoS Curr. 2017;9. doi: 10.1371/currents.outbreaks.45deb8e03a438c4d088afb4fafae8747 28286698

25. Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17: 146–159. doi: 10.1038/nrg.2015.34 26875679

26. Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012;7: e42771. doi: 10.1371/journal.pone.0042771 22970102

27. Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes. PLoS Negl Trop Dis. 2015;9: e0003864. doi: 10.1371/journal.pntd.0003864 26135160

28. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Sci Rep. 2016;6: 28792. doi: 10.1038/srep28792 27364935

29. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476: 450–453. doi: 10.1038/nature10355 21866159

30. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139: 1268–1278. doi: 10.1016/j.cell.2009.11.042 20064373

31. Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 2017;15: e2001894. doi: 10.1371/journal.pbio.2001894 28557993

32. Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genet. 2006;7: 427–435. doi: 10.1038/nrg1870 16682981

33. Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? Int J Environ Res Public Health. 2017;14. doi: 10.3390/ijerph14091006 28869513

34. Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a Confinable Gene-Drive System in the Human Disease Vector, Aedes aegypti [Internet]. 2019. doi: 10.1101/645440

35. Kandul NP, Liu J, Buchman A, Gantz VM, Bier E, Akbari OS. Assessment of a split homing based gene drive for efficient knockout of multiple genes [Internet]. 2019. doi: 10.1101/706929

36. Franz AWE, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A. 2006;103: 4198–4203. doi: 10.1073/pnas.0600479103 16537508

37. Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2010;19: 753–763. doi: 10.1111/j.1365-2583.2010.01032.x 20738425

38. Yen P-S, James A, Li J-C, Chen C-H, Failloux A-B. Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector mosquito Aedes aegypti. Communications Biology. 2018;1. doi: 10.1038/s42003-017-0011-5 30271898

39. Jupatanakul N, Sim S, Angleró-Rodríguez YI, Souza-Neto J, Das S, Poti KE, et al. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl Trop Dis. 2017;11: e0005187. doi: 10.1371/journal.pntd.0005187 28081143

40. Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science. 2012;337: 183–186. doi: 10.1126/science.1225416 22798606

41. Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A. 2012;109: E1922–30. doi: 10.1073/pnas.1207738109 22689959

42. Sumitani M, Kasashima K, Yamamoto DS, Yagi K, Yuda M, Matsuoka H, et al. Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands. Insect Mol Biol. 2013;22: 41–51. doi: 10.1111/j.1365-2583.2012.01168.x 23176559

43. Isaacs AT, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 2011;7: e1002017. doi: 10.1371/journal.ppat.1002017 21533066

44. Smith SA, de Alwis AR, Kose N, Harris E, Ibarra KD, Kahle KM, et al. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio. 2013;4: e00873–13. doi: 10.1128/mBio.00873-13 24255124

45. Hudson PJ, Kortt AA. High avidity scFv multimers; diabodies and triabodies. J Immunol Methods. 1999;231: 177–189. doi: 10.1016/s0022-1759(99)00157-x 10648937

46. Yusakul G, Sakamoto S, Pongkitwitoon B, Tanaka H, Morimoto S. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Biosci Biotechnol Biochem. 2016;80: 1306–1312. doi: 10.1080/09168451.2016.1156482 27116996

47. Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 2010;6: e1001003. doi: 10.1371/journal.ppat.1001003 20664791

48. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6: 343–345. doi: 10.1038/nmeth.1318 19363495

49. Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2000;97: 10895–10898. doi: 10.1073/pnas.97.20.10895 11005862

50. Kokoza V, Ahmed A, Wimmer EA, Raikhel AS. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol. 2001;31: 1137–1143. doi: 10.1016/s0965-1748(01)00120-5 11583926

51. Chen Z, Chen H-C, Montell C. TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon. Cell Rep. 2015;13: 573–584. doi: 10.1016/j.celrep.2015.09.018 26456832

52. Li M, Bui M, Yang T, White B, Akbari O. Germline Cas9 Expression Yields Highly Efficient Genome Engineering in a Major Worldwide Disease Vector, Aedes aegypti [Internet]. 2017. doi: 10.1101/156778

53. Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R, Sandler J, et al. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3. 2013;3: 1493–1509. doi: 10.1534/g3.113.006742 23833213

54. Huang AM, Rehm EJ, Rubin GM. Recovery of DNA sequences flanking P-element insertions in Drosophila: inverse PCR and plasmid rescue. Cold Spring Harb Protoc. 2009;2009: db.prot5199.

55. Matthews BJ, Dudchenko O, Kingan S, Koren S, Antoshechkin I, Crawford JE, et al. Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control [Internet]. bioRxiv. 2017. p. 240747. doi: 10.1101/240747

56. Matthews BJ. Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control. In: biorxiv [Internet]. [cited 9 Jun 2018]. Available: https://doi.org/10.1101/240747

57. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 23104886

58. Bhadauria V. Next-generation Sequencing and Bioinformatics for Plant Science. Caister Academic Press; 2017. doi: 10.1016/j.plantsci.2017.01.016

59. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi: 10.1186/s13059-014-0550-8 25516281

60. Simpson RJ. SDS-PAGE of Proteins. CSH Protoc. 2006;2006. doi: 10.1101/pdb.prot4313 22485689

61. Duchemin J-B, Mee PT, Lynch SE, Vedururu R, Trinidad L, Paradkar P. Zika vector transmission risk in temperate Australia: a vector competence study. Virol J. 2017;14: 108. doi: 10.1186/s12985-017-0772-y 28599659

62. Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, et al. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. PLoS Pathog. 2016;12: e1005434. doi: 10.1371/journal.ppat.1005434 26891349

63. Edwards MJ, Moskalyk LA, Donelly-Doman M, Vlaskova M, Noriega FG, Walker VK, et al. Characterization of a carboxypeptidase A gene from the mosquito, Aedes aegypti. Insect Mol Biol. 2000;9: 33–38. doi: 10.1046/j.1365-2583.2000.00159.x 10672069

64. Berghammer AJ, Klingler M, Wimmer EA. Genetic techniques: A universal marker for transgenic insects. Nature. 1999;402: 370–371. doi: 10.1038/46463 10586872

65. O’Neill SL. The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses. In: Hilgenfeld R, Vasudevan SG, editors. Dengue and Zika: Control and Antiviral Treatment Strategies. Singapore: Springer Singapore; 2018. pp. 355–360.

66. Imler J-L, Martins N. Faculty of 1000 evaluation for Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes [Internet]. F1000—Post-publication peer review of the biomedical literature. 2018. doi: 10.3410/f.732369982.793541519

67. Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, et al. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Negl Trop Dis. 2015;9: e0003894. doi: 10.1371/journal.pntd.0003894 26115104

68. Ferguson NM, Kien DTH, Clapham H, Aguas R, Trung VT, Chau TNB, et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015;7: 279ra37. doi: 10.1126/scitranslmed.3010370 25787763

69. bioRxiv; doi: 10.1101/344697

70. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015;112: E6736–43. doi: 10.1073/pnas.1521077112 26598698

71. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae [Internet]. Nature Biotechnology. 2016. pp. 78–83. doi: 10.1038/nbt.3439 26641531

72. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes [Internet]. Nature Biotechnology. 2018. pp. 1062–1066. doi: 10.1038/nbt.4245 30247490

73. Zou G, Kukkaro P, Lok S-M, Ng JKW, Tan GK, Hanson BJ, et al. Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Res. 2012;95: 216–223. doi: 10.1016/j.antiviral.2012.06.010 22771779

74. Lai C-J, Goncalvez AP, Men R, Wernly C, Donau O, Engle RE, et al. Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol. 2007;81: 12766–12774. doi: 10.1128/JVI.01420-07 17881450

75. Yamanaka A, Kotaki T, Konishi E. A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity. J Virol. 2013;87: 12828–12837. doi: 10.1128/JVI.01874-13 24049185

76. Budigi Y, Ong EZ, Robinson LN, Ong LC, Rowley KJ, Winnett A, et al. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein. PLoS Negl Trop Dis. 2018;12: e0006209. doi: 10.1371/journal.pntd.0006209 29425203

77. Long F, Doyle M, Fernandez E, Miller AS, Klose T, Sevvana M, et al. Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope. Proc Natl Acad Sci U S A. 2019; 201815432.

78. Sun H, Chen Q, Lai H. Development of Antibody Therapeutics against Flaviviruses. Int J Mol Sci. 2017;19. doi: 10.3390/ijms19010054 29295568

79. Fernandez E, Kose N, Edeling MA, Adhikari J, Sapparapu G, Lazarte SM, et al. Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio. 2018;9. doi: 10.1128/mBio.00008-18 29487230

80. Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, et al. Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host Microbe. 2015;18: 382.

81. Goo L, Debbink K, Kose N, Sapparapu G, Doyle MP, Wessel AW, et al. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat Microbiol. 2019;4: 71–77. doi: 10.1038/s41564-018-0283-7 30455471

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#