Autoři: Vladan Bernard;  Erik Staffa;  Aleš Bourek;  Marek Dostál;  Vojtěch Mornstein;  Tomáš Jůza;  Jana Pokorná
Působiště autorů: Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 3, 2020, 50, 95-100
Kategorie: Original research
doi: 10.14311/CTJ.2020.3.03


Main symptoms found in patients with same diseases as for example COVID-19 is febrile. The infrared thermography (IRT) represents a fast measurement in case of screening in public places. One of the limitations of IRT is the resolution of sensor, which has close connection with the distance between camera and ROI. To maximize the effectivity of resolution of the camera is to reduce the distance from the object. The aim of presented study showed the possibility how to protect the camera or medical staff that operates the device against potential infection or contamination from the person with infection. Two protective foils of different thickness (40 μm; 9 μm) were tested as a barrier between the IRT and the ROI (black body model and human face). Even though the results have shown that the transparent foils decrease linearly the measured value of the temperature, it can be used as a protective barrier between IRT and the object if an appropriate recalculation is done during analysis of IRT images. Results are acceptable in the case of 9μm foil especially. The authors see this possibility as a minor concession from IRT standards but as a great help in health protection. The transparent foil can be used as protective barrier of the infrared camera.

  1. Suzuki Y, Kobayashi M, Kuwabara K, Kawabe M, Kikuchi C, Fukuda M. Skin temperature responses to cold stress in patients with severe motor and intellectual disabilities. Brain and De-velopment. 2013;35(3):265–9. DOI: 10.1016/j.braindev.2012.04.003
  2. Saito H, Omura K, Tateyama M. Alternating monomeric pare-sis with decreased skin temperature and hyperhidrosis in a case of thoracolumbar myelopathy. Clin Auton Res. 2000;10(2):77–80. DOI: 10.1007/BF02279895
  3. Frize M, Ogungbemile A. Estimating rheumatoid arthritis ac-tivity with infrared image analysis. Stud Health Technol Inform. 2012;180:594–8. PMID: 22874260.
  4. Garcia‐Romero MT, Chakkittakandiyil A, Pope E. The role of infrared thermography in evaluation of proliferative infantile hemangiomas. Results of a pilot study. International J of derma-tology. 2014;53(3):e216–7. DOI: 10.1111/ijd.12045
  5. Lee JW, Kim DH, Lee HI, et al. Thermographic follow-up of a mild case of herpes zoster. Arch Dermatol. 2010;146(9): 1053–5. DOI: 10.1001/archdermatol.2010.231
  6. Neves E, Vilaça-Alves J, Antunes N, Felisberto IM, Rosa C, Reis V. Different responses of the skin temperature to physical exercise: Systematic review. 37th Annual International Confer-ence of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015;1307–10. DOI: 10.1109/EMBC.2015.7318608
  7. Neves EB, Cunha RM, Rosa C, et al. Correlation between skin temperature and heart rate during exercise and recovery, and the influence of body position in these variables in untrained women. Infrared Physics & Technology. 2016;75:70–6. DOI: 10.1016/j.infrared.2015.12.018
  8. Novotny J, Rybarova S, Zacha D, Bernacikova M, Ramadan WA. The influence of breast-stroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech. 2015;17(2):121–9. DOI:
  9. Scarano A, Piattelli A, Assenza B, et al. Infrared thermographic evaluation of temperature modifications induced during im-plant site preparation with cylindrical versus conical drills. Clin Oral Implants Res. 2011;13(4):319–23. DOI:
  10. Matsushita-Tokugawa M, Miura J, Iwami Y, et al. Detection of dentinal microcracks using infrared thermography. J of end-odontics. 2013;39(1):88–91. DOI: 10.1016/j.joen.2012.06.033
  11. Vardasca R, Marques A, Carvalho R, Gabriel J. Thermal imaging of the foot in different forms of diabetic disease. Infrared Imaging. IOP Publishing; 2015:27.1–3.
  12. Balbinot LF, Canani LH, Robinson CC, Achaval M, Zaro MA. Plantar thermography is useful in the early diagnosis of diabetic neuropathy. Clinics. 2012;67:1419–25. DOI: 10.6061/clinics/2012(12)12
  13. van Netten JJ, van Baal JG, Liu C, van der Heijden F, Bus SA. Infrared thermal imaging for automated detection of diabetic foot complications. JDST. 2013;7(5):1122–9. DOI: 10.1177/193229681300700504
  14. Von Felbert V, Schumann H, Mercer JB, Strasser W, Daeschlein G, Hoffmann G. Therapy of chronic wounds with water-filtered infrared-A (wIRA). GMS Krankenhaushygiene Interdisziplinär. 2007;2(2): Doc52. PMID: 20204086.
  15. Staffa E, Bernard V, Kubíček L, et al. Using Noncontact Infrared Thermography for Long-term Monitoring of Foot Temperatures in a Patient with Diabetes Mellitus. Ostomy Wound manage. 2016;62(4):54–61. PMID: 27065215.
  16. Chaves ME, Silva FS, Soares VP, et al. Evaluation of healing of pressure ulcers through thermography: a preliminary study. Res. Biomed. Eng. 2015;31(1):3–9. DOI:
  17. Chiu WT, Lin PW, Chiou HY, Lee WS, Lee CN, Yang YY, et al. Infrared Thermography to Mass-Screen Suspected SARS Patients with Fever. Asia Pac J Public Health. 2005;17(1);26–8. DOI: 10.1177/101053950501700107
  18. Ring F. Pandemic: Thermography for fever screening of airport passengers. Thermology International. 2007;17(2):67.
  19. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: A review Infrared Physics & Technology. 2012;55(4):221–35. DOI: 10.1016/j.infrared.2012.03.007
  20. Howell KJ, Smith RE. Temperature of the face in children and fever screening by thermography. Thermology International 2011;21(3):81–5.
  21. Chan LS, Lo JL, Kumana CR, Cheung BM. Utility of infrared thermography for screening febrile subjects. Hong Kong Med J. 2013;19(2):109–15. PMID: 23535669.
  22. Mercer J, Ring EF. Fever screening and infrared thermal imaging: concerns and guidelines. Thermology International. 2009;19(3):67–9.
  23. Howell KJ, Mercer J, Smith RE. Infrared thermography for mass fever screening: repeating the mistakes of the past? Thermology International. 2020;30(1):5–6.
  24. IEC 80601-2-59:2017: Medical electrical equipment – Part 2-59: Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening.
  25. World IEC Fever Screening Standards Explained. Charles Rollet, 2020. Available from:
  26. Nguyen AV, Cohen NJ, Lipman H, et al. Comparison of 3 infrared thermal detection systems and self-report for mass fever screening. Emerg Infect Dis. 2010;16(11):1710–7. DOI: 10.3201/eid1611.100703
  27. Ghassemi P, Pfefer TJ, Casamento JP, Simpson R, Wang Q. Best practices for standardized performance testing of infrared thermographs intended for fever screening. PLOS ONE. 2018; 13(9):e0203302. DOI: 10.1371/journal.pone.0203302
  28. Enforcement Policy for Telethermographic Systems During the Coronavirus Disease 2019 (COVID-19) Public Health Emer-gency, U.S. Department of Health and Human Services Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Product Evaluation and Quality (OPEQ), April 2020. Available from:
  29. ISO/TR 13154:2017: Medical electrical equipment — Deploy-ment, implementation and operational guidelines for identi-fying febrile humans using a screening thermograph.
  30. Niu HH, Lui PW, Hu JS, et al. Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Chinese Medical Journal (Taipei). 2001;64(8):459–68. PMID: 11720145.
  31. Silberstein EB, Bahr GK, Kaitan J. Thermographically mea-sured normal skin temperature asymmetry in the human male. Cancer. 1975;36:1506–10. DOI:
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se