Autoři: Daniela Brazete;  Ana S. Neto;  José M. F. Ferreira
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2019, 49, 5-10
Kategorie: Original research


High-performance bioceramics such as zirconia, alumina, and their composites, are attractive materials for the fabrication of load-bearing bone implants because of their outstanding mechanical properties, biocompatibility, corrosion resistance, and aesthetic quality. A suitable level of porosity and pore sizes with a few hundred microns are required for a good bone integration of the scaffolds. This requirement can be achieved through additive manufacturing, like robocasting. For this purpose, the optimization of colloidal inks is one of paramount importance as the rheological properties of the inks determine the quality of the three-dimensional structures. This target has not been satisfactorily accomplished in previous research works. The present study aims at closing this gap by carrying out a systematic investigation about the influence of the most important parameters that determine the printing ability of zirconia inks. The dispersing ability of the zirconia powder was studied in order to maximize the solids loading while keeping a high degree of homogeneity of the starting suspensions. The viscoelastic properties of the suspensions were then altered by adding suitable doses of a coagulating agent to obtain easily extrudable pastes for the robocasting process. The green samples were dried and sintered at the heating rate of 1 ºC/min up to 600 ºC, an holding at this temperature for 1 h, followed by an heating rate of 5 ºC/min up to 1350 ºC and holding for 1 h at this temperature, and then cooling down to room temperature. Zirconia inks with high fraction of solids (48 vol%) could be successfully prepared. The extruded cylinders exhibited an excellent shape retention in scaffolds with different macropore sizes (200, 300, 400 and 500 mm).

Klíčová slova:

zirconia ink – 3D porous scaffolds – suspensions – robocasting

  1. Nilsson M. Injectable Calcium sulphate and Calcium Phosphate bone substitutes. Department of Orthopaedics. Lund University; 2003.
  2. Jordan KM, Cooper C. Epidemiology of osteoporosis. Best Pract. Res. Clin. Rheumatol. 2002;16(5):795-806.
  3. Planell JA, Navarro M. Challenges of bone repair. 2009.
  4. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25.
  5. Dorozhkin SV. Calcium orthophosphates in dentistry. J. Mater. Sci. Mater. Med. 2013;24(6):1335-63.
  6. Ramesh S, Tan CY, Tolouei R, Amiriyan M, Purbolaksono J, Sopyan I, Teng WD. Sintering behavior of hydroxyapatite prepared from different routes. Mater. Des. 2012;34:148-54.
  7. Dorozhkin S. Calcium Orthophosphates: Applications in Nature, Biology, and Medicine. Taylor & F.; 2012.
  8. Moroni L, De Wijn JR, Van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer. 2008;19(5):543-72.
  9. Liu CZ, Czernuszka JT. Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology. Mater. Sci. Technol. 2007;23(5):379-91.
  10. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engi-neering. Bioact. Mater. 2018;3(3):278-314.
  11. Ben-Nissan B. Natural bioceramics: From coral to bone and beyond. Curr. Opin. Solid State Mater. Sci. 2003;7(4–5):283-8.
  12. Bohner M, Van Lenthe GH, Grünenfelder S, Hirsiger W, Evison R, Müller R. Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials. 2005;26(31):6099-105.
  13. Soltmann U, Böttcher H, Koch D, Grathwohl G. Freeze gelation: A new option for the production of biological ceramic com-posites (biocers). Mater. Lett. 2003;57(19):2861-5.
  14. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog. Mater. Sci. 2018;93:45-111.
  15. Marques CF, Perera FH, Marote A, Ferreira S, Vieira SI, Olhero S, Miranda P, Ferreira JM. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. J. Eur. Ceram. Soc. 2017; 37(1):359-68.
  16. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JM. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 2014;34(1):107-18.
  17. Lewis JA. Direct-write assembly of ceramics from colloidal inks. Curr. Opin. Solid State Mater. Sci. 2002;6(12):245-50.
  18. Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials. 2005;26(28):5632-9.
  19. Peng E, Zhang D, Ding J. Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Ceram. Addit. Manuf. 2018;1802404:1-14.
  20. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P. Additive Manufacturing of Ceramic-Based Materials. Adv. Eng. Mater. 2014;16(6):729-54.
  21. Smay JE, Cesarano J, Lewis JA. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir. 2002;18(14): 5429-37.
  22. Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 2010;6(1):218-28.
  23. Stewart TD, Tipper JL, Insley G, Streicher RM, Ingham E, Fisher J. Severe wear and fracture of zirconia heads against alumina inserts in hip simulator studies with microseparation. J. Arthro-plasty. 2003;18(6):726-34.
  24. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent. Mater. 2008;24(3):299-307.
  25. Aboushelib MN, Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles. Int. J. Implant Dent. 2017;3(21).
  26. Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 2009;29(7): 1245-55.
  27. Li Y, Li L, Li B. Direct write printing of three-dimensional ZrO2 biological scaffolds. Mater. Des. 2015;72:16-20.
  28. Liao J, Chen H, Luo H, Wang X. Direct ink writing of zirconia three-dimensional structures. J. Mater. Chem. C. 2017;5:5867-71.
  29. Peng E, Wei1 X, Garbe U, Yu D, Edouard B, Liu A, Ding J. Robocasting of dense yttria-stabilized zirconia structures. J. Mater. Sci. 2018;53(1):247-73.
  30. Feilden E, Blanca EG, Giuliani F, Saiz E, Vandeperre L. Robocasting of Structural Ceramic Parts with Hydrogel Inks. J. Eur. Ceram. Soc. 2016;36:2525-33.
  31. Olhero SM, Ferreira JM. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol. 2004;139(1):69-75.
  32. Kocjan A, Pouchly V, Shen Z. Processing of zirconia nano-ceramics from a coarse powder. J. Eur. Ceram. Soc. 2015;35(4): 1285-95.
  33. Zocca A, Colombo P, Gomes CM, Günster J. Additive Manu-facturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc. 2015;98(7):1983-2001.
  34. Olhero SM, Lopes E, Ferreira JM. Fabrication of ceramic microneedles – The role of specific interactions between processing additives and the surface of oxide particles in Epoxy Gel Casting. J. Eur. Ceram. Soc. 2016;36(16):4131-40.

Článek vyšel v časopise

Lékař a technika

Číslo 1

2019 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!