Agcu bimetallic nanoparticles modified by polyvinyl alcohol - the cells viability study in vitro

Autoři: Vladan Bernard 1;  Ondřej Zobač 2;  Marcela Vlková 3;  Vojtěch Mornstein 1;  Jiří Sopoušek 2
Působiště autorů: Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic 1;  Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic 2;  Department of Clinical Immunology and Allergy, St Anne’s Faculty Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic 3
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2018, 48, 5-10
Kategorie: Původní práce


The effects of elementary metallic nanoparticles on living objects as cytotoxicity or antibacterial activity are widely known. Ag nanoparticles are a suitable and well known example. Nanoparticles formed by an alloy of Ag and Cu stabilized by polyvinyl alcohol were examined on two human tumor cells - ovarian carcinoma cells A2780 and skin melanoma cells A375. Bimetallic AgCu nanoparticles were synthesized by using a method of chemical co-reduction of silver nitrate and copper (II) nitrate hydrate. The nanoparticles were characterized by electron microscopy and by measurement of zeta potential. Cell viability was tested by using an MTT (tetrazole colorimetric viability assay) test. The effect on cell apoptosis and necrosis was measured by using flow cytometry. The experimental results indicate a differentiated impact of nanoparticles on the cells used. A more significant effect of viability decrease was observed for A2780 cells. The cell death caused by the nanoparticles used was observed particularly in the form of initial and advanced apoptosis for both cells lines, necrosis was observed to a lesser extent. The synthesized bimetallic nanoparticles seem to be a suitable candidate for targeted suppression of cell proliferation.

AgCu NPs, cells A2780, cells A375, nanoparticle, viability

  1. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz, N.: Titanium dioxide nanoparticles in food and personal care products, Environ Sci Technol., 2012, 46, 2242–2250.
  2. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., Dhawan, A.: Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells, Chemosphere, 2011, 83, 1124–1132.
  3. Matranga, V., Corsi I.: Toxic effects of engineered nano-particles in the marine environment: Model organisms and molecular approaches, Marine Environmental Research, 2012, 32–40.
  4. Lanone, S., Rogerieux, F., Geys Dupont, J., Maillot-Marechal, E., Boczkowski, J., Lacroix, G., Hoet, P.: Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines, Particle and Fibre Toxicology, 2009, 6, 14.
  5. Shin, K., Kim, D. H., Yeo, S. Ch., Lee, H. M.: Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: A DFT study, Catalysis Today, 2012, 185, 1, 94–98.
  6. Sha, B. Y., Gao, W., Wang, S. Q., Xu, F., Lu, T. J.: Cyto-toxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat, Composites Part B: Engineering, 2011, 42, 8, 2136–2144.
  7. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A. A.: Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 2012, 71, 114–116.
  8. Pérez-Herrero, E, Fernández-Medarde, A.: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemo-therapy, Eur J Pharm Biopharm., 2015, 93, 72–79.
  9. Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, Journal of Controlled Release, 2015, 200, 138–157.
  10. Sopoušek, J., Pinkas, J., Brož, P., Buršík, J., Vykoukal, V., Škoda, D., Stýskalík, A., Zobač, O., Vřešťál, J., Hrdlička, A., Šimbera, J.: Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment, Journal of Nano-materials, 2014, 36, 13.
  11. Singh, R. P., Ramarao, P.: Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles, Toxicology Letters, 2012, 213, 2, 249–259.
  12. Easow, J. S., Selvaraju, T.: Unzipped catalytic activity of copper in realizing bimetallic Ag@Cu nanowires as a better amperometric H2O2, Electrochimica Acta, 2013, 112, 648–654.
  13. Chung, K. H., Hsiao, L. Y., Lin, Y. S., Duh, J. G.: Morphology and electrochemical behavior of Ag–Cu nanoparticle-doped amalgams, Acta Biomaterialia, 2008, 4, 3, 717–724.
  14. Kar, S., Baqchi, B., Bhandary, S., Basu, S., Nandy, P., Das, S.: Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications, Biochimica and Biophysica Acta, 2014, 1840, 3264–3276.
  15. Taner, M., Sayar, N., Yulugb, I. G., Suzer, S.: Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys, J. Mater. Chem., 2011, 21, 13150.
  16. Bernard, V., Zobač, O., Sopoušek, J., Mornstein, V.: AgCu Bimetallic nanoparticle under effect of low intensity ultrasound: the cell viability study in vitro, Journal of Cancer Research, 2014, 36, 13.
  17. Becaro, A. A., Jonsson, C. M., Puti, F. C., Siqueira, M. C., Mattoso, L. H. C., Correa, D. S., Ferreira, M. D.: Toxicity of PVA-stabilized silver nanoparticles to algae and micro-crustaceans, Environmental Nanotechnology, Monitoring & Management, 2015, 3, 22–29.
  18. Ali, I. O.: Synthesis and characterization of Ag0/PVA nano-particles via photo- and chemical reduction methods for anti-bacterial study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 922–929.
  19. Sourav Bhattacharjee: DLS and zeta potential – What they are and what they are not?, Journal of Controlled Release, 2016, 235, 337–351.
  20. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 16, 55–63.
  21. Tomankova, K., Horakova, J., Harvanova, M., Malina, L., Sou-kupova, J., Hradilova, S., Kejlova, K., Malohlava, J., Licman, L., Dvorakova, M., Jirova, D., Kolarova, H., Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro, Food and Chemical Toxicology, 2015, 85, 20–30.
  22. Mukherjee, S. G., O’Claonadh, N., Casey, A., Chambers, G.: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines, Toxicology in Vitro, 2012, 26, 238–251.
  23. Rodhe, Y., Skoglund, S., Wallinder, I. O., Potácová, Z., Möller, L.: Show more Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol. in Vitro, 2015, 29, 1711–1719.
  24. Thakore, S. I. et al.: Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arabian Journal of Chemistry (2015),
  25. Patra, H. K., Dasgupta, A.: Cancer cell response to nano-particles: criticality and optimality, Nanomed. Nanotechnol. 2011, 8, 115–121.
  26. Alkilany, A. M., Murphy, C. J.: Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res, 2010, 12, 2313–2333.
  27. Ahameda, M., AlSalhia, M. S., Siddiquib, M. K. J.: Silver nano-particle applications and human health, Clinica Chimica Acta, 2010, 411, 1841–1848.
  28. El-Hussein, A., Mfouo-Tynga, I., Abdel-Harith, M., Abrahamse, H.: Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B., 2015, 153, 67–75.

Článek vyšel v časopise

Lékař a technika

Číslo 1

2018 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!