#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A comparsion of the quality of dental crowns from TI-6AL-4V and cocr alloys made with SLM technology


Autoři: Viktória Rajťúková 1;  Alena Balogová 1;  Teodor Tóth 1;  Radovan Hudák 1;  Jozef Živčák 1;  Gabriela Ižáriková 2;  Andrej Somoš 3;  Mila Kovačevič 4
Působiště autorů: Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia 1;  Department of Applied mathematics and Informatics, Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia 2;  Louis Pasteur University Hospital, Department of Pneumology and Phtiseology, Kosice, Slovakia 3;  Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia 4
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2018, 48, 22-28
Kategorie: Původní práce

Souhrn

At present, dental replacements are more and more often being made with the use of additive manufacturing. In dentistry, selective laser melting (SLM), which enables the manufacturing of dental replacements from the alloys CoCr and Ti-6Al-4V, is the technology most used. With comparable costs for production, Ti-6Al-4V has significantly better biocompatibility, better mechanical properties and lower weight in comparison with an alloy from CoCr. The goal of the submitted study is a comparison of the production precision of dental crowns from CoCr alloy and Ti-6Al-4V alloy manufactured on a Mlab cusing R machine. For purposes of the study 30 crowns were manufactured from CoCr alloy and 30 from Ti-6Al-4V alloy on a Mlab cusing R machine, with the settings recommended by the manufacturer. After production the crowns were scanned using a Medit Identica dental scanner. The obtained data were subsequently modified and compared with a nominal CAD model in the Volume Graphics VGStudioMAX 2.2 software. The results are deviations on the level of 95% of coverage of the compared work with nominal geometry for all evaluated groups. The obtained deviations were subsequently processed statistically for the purpose of determining the statistical significance of the difference between the materials.

Keywords:
dental crowns, CoCr alloy, Ti-6Al-4V alloy, quality of production, SLM technology


Zdroje
  1. Kalachev, Y., Ralev, R., Jordanov, P.: Finite element tension analysis of the supporting tissues of a maxillary canine. Folia Medica (Plovdiv). 2001; 43(1-2): 105–108.
  2. Kalachev, Y.: Analysis of stresses in hard dental tissues generated by clinical application of retentive root canal posts. Folia Medica (Plovdiv). 2004; 46(4): 42–46.
  3. Kato, A., Ohno, N.: Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig. 2008 May; 13(1): 43–46.
  4. Kincade, K.: 3D visualization makes learning dental anatomy a snap. Last Updated kk 4/29/2013.
  5. Strietzel, R.: Selective Laser Melting in Dentistry. Informatics in Oral Medicine: Advanced Techniques in Clinical and Diagnostic Technologies. 2010; 111–125.
  6. Torabi, K., Farjood, E., Hamedani, S.: Rapid prototyping technologies and their applications in prosthodontics, a review of literature, J Dent Shiraz MedSci, 16 (2015), pp. 1–9.
  7. van Noort, R.: The future of dental devices is digital, Dental Materials, Volume 28, Issue 1, 2012, Pages 3–12, ISSN 0109-5641, http://dx.doi.org/10.1016/j.dental.2011.10.014.
  8. Ohkubo, Ch., et al.: Effect of implant support on distal-extension removable partial dentures: in vivo assessment. International Journal of Oral & Maxillofacial Implants 23.6 (2008). Witkowski, S.: (CAD-)/CAM in der Zahntechnik: Buyer’s Guide 2003. Zahntech Mag. 2002; 6: 696–709.
  9. Dikova, Ts., et al.: Modern trends in the development of the technologies for production of dental constructions, Journal of IMAB–Annual Proceeding Scientific Papers 21.4 (2015): 974–981.
  10. Jeng, J. Y., Chang, K. Y., Dong, D. R., Shih, H. S.: Tooth crown fabrication using reverse engineering technology and model maker rapid prototyping system. Rapid Prototyp J, 2000, 6(2): 136–145.
  11. Jeng, J. Y., Chen, C. Y., Chen, S., Chen, R.: Application of a micro-CT scan to tooth crown dimensions measurement and CAD model construction for rapid prototyping. J Chin Soc Mech Eng, 2000, 21(3): 321–324.
  12. Hong, Min-Ho, Bong Ki Min, and Tea-Yub Kwon: Fabricating High-Quality 3D-Printed Alloys for Dental Applications, Applied Sciences 7.7 (2017): 710.
  13. Lima, J. M., Anami, L., Araujo, R. M., Pavanelli, C. A.: Removable partial dentures: use of rapid prototyping, J Prosthodont, 23 (2014), pp. 588–591.
  14. Williams, R. J., Bibb, R., Eggbeer, D., et al: Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent 2006; 96: 96–99.
  15. Koutsoukis, T., et al.: Selective Laser Melting Technique of Co‐Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques, Journal of Prosthodontics 24.4 (2015): 303–312.
  16. Castillo-Oyague, R., Osorio, R., Osorio, E., et al: The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frame-works. Microsc Res Tech 2012; 75: 1206–1212.
  17. Ucar, Y., Akova, T., Akyil, M. S., et al: Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009; 102: 253–259.
  18. Castillo-de-Oyague, R., Sanchez-Turrion, A., Lopez-Lozano, J. F., et al: Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents. Med Oral Patol Oral Cir Bucal 2012; 17: e610–617.
  19. Castillo-Oyague, R., Lynch, C. D., Turrion, A. S., et al: Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents. J Dent2013; 41: 90–96.
  20. Oyague, R. C., Sanchez-Turrion, A, Lopez-Lozano, J. F., et al: Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques. Odontology 2012; 100: 249–253.
  21. Tara, M. A, Eschbach, S., Bohlsen, F., et al: Clinical outcome of metal-ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont 2011; 24: 46–48.
  22. Xiang, N., Xin, X. Z., Chen, J., et al: Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Dent 2012; 40: 453–457.
  23. Xin, X. Z., Chen, J., Xiang, N., et al: Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem Biophys 2013; 67: 983–990.
  24. Ortorp, A., Jonsson, D., Mouhsen, A., et al: The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater 2011; 27: 356–363.
  25. Hama Suleiman, S., Vult von Steyern, P.: Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand 2013; 71: 1280–1289.
  26. Takaichi, A., Suyalatu, Nakamoto, T., et al: Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 2013; 21: 67–76.
  27. Craig, R. G., Powers, J. M., Wataha, J. C.: Dental Materials: Properties and Manipulation (7th ed), Mosby, Missouri (2000), pp. 229–231.
  28. Choi, Y. J., Koak, J. Y., Heo, S. J., Kim, S. K., Ahn, J. S., Park, D. S.: Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques. J Korean Acad Prosthodont. 2014 Apr; 52(2): 67–73.
  29. Powers, J. M., Sakaguchi, R. L.: Craig’s Restorative Dental Materials (12th ed), Mosby, Missouri (2006).
  30. Wataha, J. C.: Alloys for prosthodontic restorations, Journal of Prosthetic Dentistry, 87 (2002), pp. 351–363.
  31. Ameer, M. A., Khamis, E., Al-Motlaq, M.: Electrochemical behaviour of recasting Ni-Cr and Co-Cr non-precious dental alloys, Corros Sci, 46 (2004), pp. 2825–2836.
  32. Anusavice, K. J., Shen, C., Rawls, H. R.: Phillips’ science of dental materials (12th ed.), Saunders/Elsevier, St Louis (2013), pp. 367–396.
  33. Viennot, S., Dalard, F., Lissac, M., Grosgogeat, B.: Corrosion resistance of cobalt-chromium and palladium-silver alloys used in fixed prosthetic restorations. Eur J Oral Sci 2005; 113: 90–95.
  34. de Vasconcellos, L. G., Buso, L., Lombardo, G. H., Souza, R. O., Nogueira, L. Jr., Bottino, M. A., Ozcan, M.: Opaque layer firing temperature and aging effect on the flexural strength of ceramic fused to cobalt-chromium alloy. J Prosthodont 2010; 19: 471–477.
  35. Markhoff, J.; Krogull, M.; Schulze, C.; Rotsch, C.; Hunger, S.; Bader, R.: Biocompatibility and inflammatory potential of titanium alloys cultivated with human osteoblasts, fibroblasts and macrophages. Materials 2017, 10, 52.
  36. Witkowski, S., Komine, F., Gerds, T.: Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques, The Journal of Prosthetic Dentistry, Volume 96, Issue 1, 2006, Pages 47–52, ISSN 0022-3913.
  37. Tschernitschek, H., Borchers, L., Guertsen, W.: Nonalloyed titanium as a bioinert metal-a review, Quintessence Int, 36 (2005), pp. 523–530.
  38. Süleyman Hakan Tuna, Nuran Özçiçek Pekmez, Işın Kürkçüoğlu: Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods, The Journal of Prosthetic Dentistry, Volume 114, Issue 5, 2015, Pages 725–734, ISSN 0022-3913.
  39. Siegbert Witkowski, Futoshi Komine, Thomas Gerds: Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques, The Journal of Prosthetic Dentistry, Volume 96, Issue 1, 2006, Pages 47–52, ISSN 0022-3913.
  40. Jemt, T., Linden, B.: Fixed implant-supported prostheses with welded titanium frame works, Int J Periodontal Restor Dent, 12 (1992), pp. 176–183.
  41. Jin, L., Li, P. Z., Zhou, H. B., Zhang, W., Zhou, G. D., Wang, C.: Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel, Prog. Nat. Sci. Mater. Int., 25 (2015), pp. 141–146.
  42. Wu, M., Tinschert, J., Augthun, M., Wagner, I., Schädlich-Stubenrauch, J., Sahm, P. R., Spiekermann, H.: Application of laser measuring, numerical simulation and rapid prototyping to titanium dental castings, Dental Materials, Volume 17, Issue 2, 2001, Pages 102–108, ISSN 0109-5641.
  43. Jin-Hun Jeon, Byeong-Yeol Choi, Chong-Myeong Kim, Ji-Hwan Kim, Hae-Young Kim, Woong-Chul Kim: Three-dimensional evaluation of the repeatability of scanned conventional impressions of prepared teeth generated with white- and blue-light scanners, The Journal of Prosthetic Dentistry, Volume 114, Issue 4, 2015, P. 549–553, ISSN 0022-3913.
Štítky
Biomedicína
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#