#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Expresia ligandu 1 programovanej smrti v nemalobunkovom karcinóme pľúc – mechanizmus regulácie, asociácia s ostatnými markermi a terapeutické využitie


Autoři: V. Tancoš 1;  A. Blichárová 1;  L. Plank 2,3
Působiště autorů: Ústav patológie UPJŠ LF a UNLP, Slovenská republika 1;  Ústav patologickej anatómie Jesseniovej lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice v Martine, Slovenská republika 2;  Martinské bio ptické centrum, s. r. o. v Martin, Slovenská republika 3
Vyšlo v časopise: Klin Onkol 2022; 35(5): 372-376
Kategorie: Přehled
doi: https://doi.org/10.48095/ccko2022372

Souhrn

Východiská: Inhibítory imunitných kontrolných bodov (ICI) blokujúce signálnu dráhu proteínu 1 programovanej smrti (PD-1), dramaticky zlepšili prežívanie pacientov s pokročilým nemalobunkovým karcinómom pľúc (NSCLC). Imunohistochemická analýza expresie ligandu 1 programovanej smrti (PD-L1) je toho času najviac využívaným a klinicky validovaným bio­markerom predikujúcim efektívnosť ICI u pacientov s NSCLC, ale sám o sebe predstavuje nedokonalý nástroj. Signálna dráha PD-1 je poprepájaná s početnými celulárnymi ako aj molekulárnymi faktormi prítomnými v nádorovom mikroprostredí (TME) v NSCLC. Celulárne faktory, ktoré sa podieľajú na regulácii expresie PD-L1 v NSCLC sú pripisované aktivite nádor infiltrujúcich lymfocytov a s nádorom asociovanými fibroblastmi. Vnútorné molekulárne faktory, ktoré majú vplyv na úroveň expresie PD-L1 v NSCLC, sú asociované s prítomnosťou onkogénnych driver mutácií v génoch receptora epidermálneho rastového faktora a v homológu virového onkogénu Kirsten rat sarcoma a s translokáciami vedúcimi k prestavbe kinázy anaplastického lymfómu. Okrem toho, na úroveň expresie PD-L1 v NSCLC môže mať vplyv aj stimulácia hypoxických signálnych dráh a aktivácia transformujúceho rastového faktora beta 1. Hlbšie pochopenie zložitých mechanizmov regulujúcich expresiu PD-L1 je nevyhnutné, aby bolo v budúcnosti možné ušiť na mieru terapiu s použitím ICI u pacientov s pokročilým NSCLC. Cieľ: V predkladanom prehľadovom článku prezentujeme súhrn kľúčových faktorov podieľajúcich sa na regulácii expresie PD-L1 v rámci TME v NSCLC, ktoré sú a potenciálne môžu byť využívané za účelom zlepšenia účinnosti imunoterapie, ktorá blokuje signálnu dráhu PD-1.

Klíčová slova:

nemalobunkový karcinóm pľúc – tumor infiltrujúce lymfocyty – inhibítory imunitných kontrolných bodov – proteínu 1 programovanej smrti – ligand 1 programovanej bunkovej smrti – epitelovo mezenchýmový prechod – hypoxiou indukovateľný faktor-1α


Zdroje

1. Mallett G, Laurence A, Amarnath S. Programmed cell death-1 receptor (PD-1) -mediated regulation of innate lymphoid cells. Int J Mol Sci 2019; 20 (11): 2836. doi: 10.3390/ijms20112836.

2. Zatloukalová P, Pjechová M, Babčanová S et al. The role of PD-1/PD-L1 signaling pathway in antitumor immune response. Klin Onkol 2016; 29 (Suppl 4): 4S72–4S77. doi: 10.14735/amko20164S72.

3. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8 (328): 328rv4. doi: 10.1126/scitranslmed.aad7118.

4. Koubková L. Immunotherapy of bronchogenic carcinoma and its perspectives. Klin Onkol 2015; 28 (Suppl 4): 4S77–4S81. doi: 10.14735/amko20154S77.

5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12 (4): 252–264. doi: 10.1038/nrc3239.

6. Gridelli C, Ardizzoni A, Barberis et al. Predictive biomarkers of immunotherapy for non-small cell lung cancer: results from an experts panel meeting of the Italian association of thoracic oncology. Transl Lung Cancer Res 2017; 6 (3): 373–386. doi: 10.21037/tlcr.2017.05.09.

7. Garon EB, Rizvi NA, Hui et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372 (21): 2018–2028. doi: 10.1056/NEJMoa1501824.

8. Fehrenbacher L, Spira A, Ballinger M et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016; 387 (10030): 1837–1846. doi: 10.1016/S0140-6736 (16) 00587-0.

9. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373 (17): 1627–1639. doi: 10.1056/NEJMoa1507643.

10. Herbst RS, Baas P, Kim D-W et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387 (10027): 1540–1550. doi: 10.1016/S0140-6736 (15) 01281-7.

11. Hui R, Garon EB, Goldman et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncology 2017; 28 (4): 874–881. doi: 10.1093/annonc/mdx008.

12. Wang C, Wang H, Wang L. Biomarkers for predicting the efficacy of immune checkpoint inhibitors. J Cancer 2022; 13 (2): 481–495. doi: 10.7150/jca.65012.

13. Lagos GG, Izar B, Rizvi NA. Beyond tumor PD-L1: emerging genomic biomarkers for checkpoint inhibitor immunotherapy. Am Soc Clin Oncol Educ Book 2020; 40: 1–11. doi: 10.1200/EDBK_289967.

14. Chen J, Jiang CC, Jin L et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2016; 27 (3): 409–416. doi: 10.1093/annonc/mdv615.

15. Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett 2020; 468: 72–81. doi: 10.1016/j.canlet.2019.10.013. 2X.2015.1108514.

16. Sun C, Mezzadra R, Schumacher TN et al. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018; 48 (3): 434–452. doi: 10.1016/j.immuni.2018.03. 014.

17. Jiang Y, Chen M, Nie H et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019; 15 (5):  1111–1122. doi: 10.1080/21645515.2019.1571892.

18. Lamberti G, Sisi M, Andrini E et al. The mechanisms of PD-L1 regulation in non-small-cell lung cancer (NSCLC): which are the involved players? Cancers 2020; 12 (11): 3129. doi: 10.3390/cancers12113129.

19. Garcia-Diaz A, Shin DS, Moreno BH et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 2017; 19 (6): 1189–1201. doi: 10.1016/j.celrep.2017.04.031.

20. Wang X, Yang L, Huang F et al. Inflammatory cytokines IL-17 and TNF-a up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 2017; 184: 7–14. doi: 10.1016/j.imlet.2017.02.006.

21. Zhang W, Liu Y, Yan Z et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer 2020; 8 (1): e000285. doi: 10.1136/jitc-2019-000285.

22. Shen MJ, Xu LJ, Yang L et al. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 2017; 8 (46): 80506–80520. doi: 10.18632/oncotarget.19193.

23. Jiang C, Yuan F, Wang J et al. Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobio­logy 2017; 222 (4): 651–657. doi: 10.1016/j.imbio­.2016.12.002.

24. Carbotti G, Barisione G, Airoldi I et al. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 2015; 6 (41): 43267–43280. doi: 10.18632/oncotarget.6530.

25. Yi M, Niu M, Xu L et al. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14 (1): 10. doi: 10.1186/s13045-020-01027-5.

26. Hendry S, Salgado R, Gevaert T et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 2017; 24 (6): 311–335. doi: 10.1097/PAP.0000000000000161.

27. Salgado R, Denkert C, Demaria S et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–271. doi: 10.1093/annonc/mdu450.

28. Wong PF, Wei W, Smithy JW et al. Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer Res 2019; 25 (8): 2442–2449. doi: 10.1158/1078-0432.CCR-18-2652.

29. Paijens ST, Vledder A, de Bruyn M et al. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021; 18 (4): 842–859. doi: 10.1038/s41423-020-00565-9.

30. Karachaliou N, Gonzalez-Cao M, Crespo G et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol 2018; 10: 175883401774974. doi: 10.1177/1758834017749 748.

31. Ayers M, Lunceford J, Nebozhyn M et al. IFN- g–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017; 127 (8): 2930–2940. doi: 10.1172/ JCI91190.

32. Fumet J-D, Richard C, Ledys F et al. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br J Cancer 2018; 119 (8): 950–960. doi: 10.1038/s41416-018-0220-9.

33. Gettinger SN, Choi J, Mani N et al. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 2018; 9 (1): 3196. doi: 10.1038/s41467-018-05032-8.

34. Brody R, Zhang Y, Ballas M et al. PD-L1 expression in advanced NSCLC: insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 2017; 112: 200–215. doi: 10.1016/j.lungcan.2017.08.005.

35. Lingling Z, Jiewei L, Li W et al. Molecular regulatory network of PD-1/PD-L1 in non-small cell lung cancer. Pathol Res Prac 2020; 216 (4): 152852. doi: 10.1016/j.prp.2020.152852.

36. Dogan S, Shen R, Ang DC et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS –mutant cancers. Clin Cancer Res 2012; 18 (22): 6169–6177. doi: 10.1158/1078-0432.CCR-11-3265.

37. Coelho MA, de Carné Trécesson S, Rana S et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 2017; 47 (6): 1083–1099.e6. doi: 10.1016/j.immuni.2017.11.016.

38. Chen N, Fang W, Lin Z et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother 2017; 66 (9): 1175–1187. doi: 10.1007/s00262-017-2005-z.

39. Rekhtman N, Ang DC, Riely GJ et al. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol 2013; 26 (10): 1307–1319. doi: 10.1038/modpathol.2013.74.

40. Forest F, Casteillo F, Da Cruz V et al. Heterogeneity of PD-L1 expression in lung adenocarcinoma metastasis is related to histopathological subtypes. Lung Cancer 2021; 155: 1–9. doi: 10.1016/j.lungcan.2021.02.032.

41. Brody R, Zhang Y, Ballas M et al. PD-L1 expression in advanced NSCLC: insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 2017; 112: 200–215. doi: 10.1016/j.lungcan.2017.08.005.

42. Sonobe M, Manabe T, Wada H et al. Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma. Br J Cancer 2005; 93 (3): 355–363. doi: 10.1038/sj.bjc.6602 707.

43. Sharma SV, Bell DW, Settleman J et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7 (3): 169–181. doi: 10.1038/nrc2088.

44. Shi Y, Au JS-K, Thongprasert S et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 2014; 9 (2): 154–162. doi: 10.1097/JTO.0000000000000 033.

45. Saruwatari K, Ikemura S, Sekihara K et al. Aggressive tumor microenvironment of solid predominant lung adenocarcinoma subtype harboring with epidermal growth factor receptor mutations. Lung Cancer 2016; 91: 7–14. doi: 10.1016/j.lungcan.2015.11.012.

46. Chen N, Fang W, Zhan J et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol 2015; 10 (6): 910–923. doi: 10.1097/JTO.00000 00000000500.

47. Akbay EA, Koyama S, Carretero J et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 2013; 3 (12): 1355–1363. doi: 10.1158/2159-8290.CD-13-0310.

48. Lastwika KJ, Wilson W, Li QK et al. Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in non-small cell lung cancer. Cancer Res 2016; 76 (2): 227–238. doi: 10.1158/0008-5472.CAN-14- 3362.

49. Zhang N, Zeng Y, Du W et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016; 49 (4): 1360–1368. doi: 10.3892/ijo.2016.3632.

50. Gainor JF, Shaw AT, Sequist LV et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 2016; 22 (18): 4585–4593. doi: 10.1158/1078-0432.CCR-15-3101.

51. Meléndez B, Van Campenhout C, Rorive S et al. Methods of measurement for tumor mutational burden in tumor tissue. Transl Lung Cancer Res 2018; 7 (6): 661–667. doi: 10.21037/tlcr.2018.08.02.

52. Toki MI, Mani N, Smithy JW et al. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol 2018; 13 (12):  1884–1896. doi: 10.1016/j.jtho.2018.09.012.

53. Ota K, Azuma K, Kawahara A et al. Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 2015; 21 (17): 4014–4021. doi: 10.1158/1078-0432.CCR-15-0016.

54. Roussel H, De Guillebon E, Biard L et al. Composite bio­markers defined by multiparametric immunofluorescence analysis identify ALK-positive adenocarcinoma as a potential target for immunotherapy. Oncoimmunology 2017; 6 (4): e1286437. doi: 10.1080/2162402X.2017.1286 437.

55. Koh J, Jang J-Y, Keam B et al. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF) -1a and STAT3. Oncoimmunology 2016; 5 (3): e1108514. doi: 10.1080/2162402X.2015.1108514.

56. Ikeda S, Goodman AM, Cohen PR et al. Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy. NPJ Genom Med 2016; 1: 16037. doi: 10.1038/npjgenmed.2016.37.

57. Inoue Y, Yoshimura K, Mori K et al. Clinical significance of PD-L1 and PD-L2 copy number gains in non-small-cell lung cancer. Oncotarget 2016; 7 (22): 32113–32128. doi: 10.18632/oncotarget.8528.

58. Budczies J, Bockmayr M, Denkert C et al. Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274) – associations with gene expression, mutational load, and survival: pan-cancer analysis of PD-L1 CNAs. Genes Chromosomes Cancer 2016; 55 (8): 626–639. doi: 10.1002/gcc.22365.

59. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119 (6): 1420–1428. doi: 10.1172/JCI39104.

60. David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2017; 170: 212–225. doi: 10.1016/j.pharmthera.2016.11.011.

61. Goswami MT, Reka AK, Kurapati H et al. Regulation of complement-dependent cytotoxicity by TGF-b-induced epithelial-mesenchymal transition. Oncogene 2016; 35 (15): 1888–1898. doi: 10.1038/onc.2015.258.

62. Chen L, Gibbons DL, Goswami S et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014; 5: 5241. doi: 10.1038/ncomms 6241.

63. David JM, Dominguez C, McCampbell KK et al. A novel bifunctional anti-PD-L1/TGF-b Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology 2017; 6 (10): e1349589. doi: 10.1080/2162402X.2017.1349 589.

64. Evanno E, Godet J, Piccirilli N et al. Tri-methylation of H3K79 is decreased in TGF-b1-induced epithelial-to-mesenchymal transition in lung cancer. Clin Epigenet 2017; 9: 80. doi: 10.1186/s13148-017-0380-0.

65. Yvorel V, Patoir A, Casteillo F et al. PD-L1 expression in pleomorphic, spindle cell and giant cell carcinoma of the lung is related to TTF-1, p40 expression and might indicate a worse prognosis. PLoS One 2017; 12 (10): e0180346. doi: 10.1371/journal.pone.0180346.

66. Chang Y-L, Yang C-Y, Lin M-W et al. High co-expression of PD-L1 and HIF-1a correlates with tumour necrosis in pulmonary pleomorphic carcinoma. Eur J Cancer 2016; 60: 125–135. doi: 10.1016/j.ejca.2016.03. 012.

67. Vieira T, Antoine M, Hamard C et al. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) and strong immune-cell infiltration by TCD3 cells and macrophages. Lung Cancer 2016; 98:  51–58. doi: 10.1016/j.lungcan.2016.05.013.

68. Ng Kee Kwong F, Laggner U, McKinney O et al. Expression of PD-L1 correlates with pleomorphic morphology and histological patterns of non-small-cell lung carcinomas. Histopathology 2018; 72 (6): 1024–1032. doi: 10.1111/his.13466.

69. Tancoš V, Grendár M, Farkašová A et al. Programmed death-ligand 1 expression in non-small cell lung carcinoma bio­psies and its association with tumor infiltrating lymphocytes and the degree of desmoplasia. Klin Onkol 2020; 33 (1): 55–65. doi: 10.14735/amko202 055.

70. Mariathasan S, Turley SJ, Nickles D et al. TGFb attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554 (7693): 544–548. doi: 10.1038/nature25501.

71. Schalper KA, Brown J, Carvajal-Hausdorf D et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst 2015; 107 (3): dju435. doi: 10.1093/jnci/dju435.

72. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016; 4: 59. doi: 10.1186/s40425-016-01 65-6.

73. Maibach F, Sadozai H, Seyed Jafari SM et al. Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol 2020; 11: 2105. doi: 10.3389/fimmu.2020.02105.

74. Zhou G, Dada LA, Wu M et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol 2009; 297 (6): L1120–L1130. doi: 10.1152/ajplung.00007.2009.

75. Barsoum IB, Smallwood CA, Siemens DR et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74 (3): 665–674. doi: 10.1158/0008-5472.CAN-13-0992.

76. Reiniger L, Téglási V, Pipek O et al. Tumor necrosis correlates with PD-L1 and PD-1 expression in lung adenocarcinoma. Acta Oncol 2019; 58 (8): 1087–1094. doi: 10.1080/0284186X.2019.1598575.

77. Noman MZ, Desantis G, Janji B et al. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211 (5): 781–790. doi: 10.1084/jem.20131916.

78. Koh YW, Lee SJ, Han J-H et al. PD-L1 protein expression in non-small-cell lung cancer and its relationship with the hypoxia-related signaling pathways: a study based on immunohistochemistry and RNA sequencing data. Lung Cancer 2019; 129: 41–47. doi: 10.1016/j.lungcan.2019.01.004.

79. Voron T, Colussi O, Marcheteau E et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212 (2): 139–148. doi: 10.1084/jem.20140559.

80. Guo R, Li Y, Wang Z et al. Hypoxia-inducible factor-1a and nuclear factor-kB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci 2019; 110 (5): 1665–1675. doi: 10.1111/cas.13989.

81. Koh J, Jang J-Y, Keam B et al. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF) -1a and STAT3. Oncoimmunology 2016; 5 (3): e1108514. doi: 10.1080/2162402X.2015.1108514.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 5

2022 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#