Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor


Autoři: Ana Sofia Brito aff001;  Benjamin Neuhäuser aff002;  René Wintjens aff003;  Anna Maria Marini aff001;  Mélanie Boeckstaens aff001
Působiště autorů: Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium aff001;  Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany aff002;  Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium aff003;  Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Département R3D, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium aff003
Vyšlo v časopise: Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008634
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008634

Souhrn

The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans.

Klíčová slova:

Candida albicans – Histidine – Multiple alignment calculation – Proline – Saccharomyces cerevisiae – Sequence alignment – Sequence databases – Xenopus oocytes


Zdroje

1. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009. doi: 10.1016/j.cell.2011.11.016 22118458.

2. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90(5):939–49. doi: 10.1016/s0092-8674(00)80358-x 9298905.

3. Maresca B, Kobayashi GS. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiological reviews. 1989;53(2):186–209. 2666842; PubMed Central PMCID: PMC372727.

4. Cullen PJ, Sprague GF Jr. The regulation of filamentous growth in yeast. Genetics. 2012;190(1):23–49. doi: 10.1534/genetics.111.127456 22219507; PubMed Central PMCID: PMC3249369.

5. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992;68(6):1077–90. doi: 10.1016/0092-8674(92)90079-r 1547504.

6. Wiren NV, Merrick M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. Topics in Current Genetics 9. 2004:95–120.

7. Auron A, Brophy PD. Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatric nephrology. 2012;27(2):207–22. doi: 10.1007/s00467-011-1838-5 21431427.

8. Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Comprehensive Physiology. 2013;3(1):201–20. doi: 10.1002/cphy.c120010 23720285; PubMed Central PMCID: PMC4319187.

9. Merhi A, Delree P, Marini AM. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Scientific reports. 2017;7:44602. doi: 10.1038/srep44602 28303961; PubMed Central PMCID: PMC5355986.

10. Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science. 2017;358(6365):941–6. doi: 10.1126/science.aam9305 29025995; PubMed Central PMCID: PMC5748897.

11. Marini AM, Soussi-Boudekou S, Vissers S, Andre B. A family of ammonium transporters in Saccharomyces cerevisiae. Molecular and cellular biology. 1997;17(8):4282–93. doi: 10.1128/mcb.17.8.4282 9234685; PubMed Central PMCID: PMC232281.

12. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature. 2008;456(7220):339–43. doi: 10.1038/nature07518 19020613.

13. Marini AM, Urrestarazu A, Beauwens R, Andre B. The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends in biochemical sciences. 1997;22(12):460–1. doi: 10.1016/s0968-0004(97)01132-8 9433124.

14. Marini AM, Vissers S, Urrestarazu A, Andre B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. The EMBO journal. 1994;13(15):3456–63. 8062822; PubMed Central PMCID: PMC395248.

15. van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, Rutherford JC. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nature communications. 2016;7:11337. doi: 10.1038/ncomms11337 27088325.

16. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, et al. Function of human Rh based on structure of RhCG at 2.1 A. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(21):9638–43. doi: 10.1073/pnas.1003587107 20457942; PubMed Central PMCID: PMC2906887.

17. Andrade SL, Dickmanns A, Ficner R, Einsle O. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(42):14994–9. doi: 10.1073/pnas.0506254102 16214888; PubMed Central PMCID: PMC1257715.

18. Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science. 2004;305(5690):1587–94. doi: 10.1126/science.1101952 15361618.

19. Marini AM, Andre B. In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Molecular microbiology. 2000;38(3):552–64. doi: 10.1046/j.1365-2958.2000.02151.x 11069679.

20. Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. The EMBO journal. 1998;17(5):1236–47. doi: 10.1093/emboj/17.5.1236 9482721; PubMed Central PMCID: PMC1170472.

21. Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Molecular microbiology. 2003;50(1):259–75. doi: 10.1046/j.1365-2958.2003.03680.x 14507379.

22. Biswas K, Morschhauser J. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular microbiology. 2005;56(3):649–69. doi: 10.1111/j.1365-2958.2005.04576.x 15819622.

23. Mitsuzawa H. Ammonium transporter genes in the fission yeast Schizosaccharomyces pombe: role in ammonium uptake and a morphological transition. Genes to cells: devoted to molecular & cellular mechanisms. 2006;11(10):1183–95. doi: 10.1111/j.1365-2443.2006.01014.x 16999738.

24. Rutherford JC, Lin X, Nielsen K, Heitman J. Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Eukaryotic cell. 2008;7(2):237–46. doi: 10.1128/EC.00079-07 18055915; PubMed Central PMCID: PMC2238157.

25. Boeckstaens M, Andre B, Marini AM. The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Molecular microbiology. 2007;64(2):534–46. doi: 10.1111/j.1365-2958.2007.05681.x 17493133.

26. Paul JA, Barati MT, Cooper M, Perlin MH. Physical and genetic interaction between ammonium transporters and the signaling protein Rho1 in the plant pathogen Ustilago maydis. Eukaryotic cell. 2014;13(10):1328–36. doi: 10.1128/EC.00150-14 25128189; PubMed Central PMCID: PMC4187648.

27. Van Nuland A, Vandormael P, Donaton M, Alenquer M, Lourenco A, Quintino E, et al. Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Molecular microbiology. 2006;59(5):1485–505. doi: 10.1111/j.1365-2958.2005.05043.x 16468990.

28. Dabas N, Schneider S, Morschhauser J. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryotic cell. 2009;8(2):147–60. doi: 10.1128/EC.00229-08 19060183; PubMed Central PMCID: PMC2643611.

29. Boeckstaens M, Andre B, Marini AM. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. The Journal of biological chemistry. 2008;283(31):21362–70. doi: 10.1074/jbc.M801467200 18508774.

30. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Molecular biology of the cell. 2008;19(7):3028–39. doi: 10.1091/mbc.E08-01-0033 18434596; PubMed Central PMCID: PMC2441671.

31. Marini AM, Boeckstaens M, Benjelloun F, Cherif-Zahar B, Andre B. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Current genetics. 2006;49(6):364–74. doi: 10.1007/s00294-006-0062-5 16477434.

32. Ludewig U. Electroneutral ammonium transport by basolateral rhesus B glycoprotein. The Journal of physiology. 2004;559(Pt 3):751–9. doi: 10.1113/jphysiol.2004.067728 15284342; PubMed Central PMCID: PMC1665183.

33. Wacker T, Garcia-Celma JJ, Lewe P, Andrade SL. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(27):9995–10000. doi: 10.1073/pnas.1406409111 24958855; PubMed Central PMCID: PMC4103351.

34. Neuhauser B, Dynowski M, Ludewig U. Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS letters. 2009;583(17):2833–8. doi: 10.1016/j.febslet.2009.07.039 19635480.

35. Wang S, Orabi EA, Baday S, Berneche S, Lamoureux G. Ammonium transporters achieve charge transfer by fragmenting their substrate. Journal of the American Chemical Society. 2012;134(25):10419–27. doi: 10.1021/ja300129x 22631217.

36. Zheng L, Kostrewa D, Berneche S, Winkler FK, Li XD. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(49):17090–5. doi: 10.1073/pnas.0406475101 15563598; PubMed Central PMCID: PMC535379.

37. Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernandez E, et al. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. Science advances. 2018;4(9):eaar3599. doi: 10.1126/sciadv.aar3599 30214933; PubMed Central PMCID: PMC6135547.

38. Mirandela GD, Tamburrino G, Hoskisson PA, Zachariae U, Javelle A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2019;33(2):1989–99. doi: 10.1096/fj.201800782R 30211659; PubMed Central PMCID: PMC6338640.

39. Boeckstaens M, Llinares E, Van Vooren P, Marini AM. The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nature communications. 2014;5:3101. doi: 10.1038/ncomms4101 24476960.

40. Boeckstaens M, Merhi A, Llinares E, Van Vooren P, Springael JY, Wintjens R, et al. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32. PLoS genetics. 2015;11(7):e1005382. doi: 10.1371/journal.pgen.1005382 26172854; PubMed Central PMCID: PMC4501750.

41. Brito AS, Soto Diaz S, Van Vooren P, Godard P, Marini AM, Boeckstaens M. Pib2-Dependent Feedback Control of the TORC1 Signaling Network by the Npr1 Kinase. iScience. 2019;20:415–33. doi: 10.1016/j.isci.2019.09.025 31622882; PubMed Central PMCID: PMC6817644.

42. Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, et al. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction. PloS one. 2013;8(5):e62745. doi: 10.1371/journal.pone.0062745 23667517; PubMed Central PMCID: PMC3647058.

43. Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, Merrick M. An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. The Journal of biological chemistry. 2006;281(51):39492–8. doi: 10.1074/jbc.M608325200 17040913.

44. Lin Y, Cao Z, Mo Y. Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. Journal of the American Chemical Society. 2006;128(33):10876–84. doi: 10.1021/ja0631549 16910683.

45. Akgun U, Khademi S. Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(10):3970–5. doi: 10.1073/pnas.1007240108 21368153; PubMed Central PMCID: PMC3054019.

46. Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, et al. The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19303–8. doi: 10.1073/pnas.0706563104 18032606; PubMed Central PMCID: PMC2148285.

47. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155(Pt 1):268–78. doi: 10.1099/mic.0.022038-0 19118367.

48. Kane PM. Proton Transport and pH Control in Fungi. Advances in experimental medicine and biology. 2016;892:33–68. doi: 10.1007/978-3-319-25304-6_3 26721270; PubMed Central PMCID: PMC5957285.

49. Gurevich VV, Gurevich EV. Arrestin-mediated signaling: Is there a controversy? World journal of biological chemistry. 2018;9(3):25–35. doi: 10.4331/wjbc.v9.i3.25 30595812; PubMed Central PMCID: PMC6305498.

50. Neuhauser B, Dunkel N, Satheesh SV, Morschhauser J. Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans. Eukaryotic cell. 2011;10(3):332–42. doi: 10.1128/EC.00293-10 21278231; PubMed Central PMCID: PMC3067475.

51. Feller A, Boeckstaens M, Marini AM, Dubois E. Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae. The Journal of biological chemistry. 2006;281(39):28546–54. doi: 10.1074/jbc.M605551200 16864574.

52. Paul JA, Wallen RM, Zhao C, Shi T, Perlin MH. Coordinate regulation of Ustilago maydis ammonium transporters and genes involved in mating and pathogenicity. Fungal biology. 2018;122(7):639–50. doi: 10.1016/j.funbio.2018.03.011 29880199.

53. Inwood WB, Hall JA, Kim KS, Demirkhanyan L, Wemmer D, Zgurskaya H, et al. Epistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB. Genetics. 2009;183(4):1327–40. doi: 10.1534/genetics.109.103747 19596908; PubMed Central PMCID: PMC2787424.

54. De Michele R, Ast C, Loque D, Ho CH, Andrade S, Lanquar V, et al. Fluorescent sensors reporting the activity of ammonium transceptors in live cells. eLife. 2013;2:e00800. doi: 10.7554/eLife.00800 23840931; PubMed Central PMCID: PMC3699834.

55. Boussouf A, Gaillard S. Intracellular pH changes during oligodendrocyte differentiation in primary culture. Journal of neuroscience research. 2000;59(6):731–9. doi: 10.1002/(SICI)1097-4547(20000315)59:6<731::AID-JNR5>3.0.CO;2-G 10700010.

56. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na—H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Molecular cell. 2000;6(6):1425–36. doi: 10.1016/s1097-2765(00)00139-8 11163215.

57. Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. The Journal of biological chemistry. 1994;269(38):23544–52. 8089122.

58. Uzman JA, Patil S, Uzgare AR, Sater AK. The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Developmental biology. 1998;193(1):10–20. doi: 10.1006/dbio.1997.8782 9466884.

59. Srivastava J, Barber DL, Jacobson MP. Intracellular pH sensors: design principles and functional significance. Physiology. 2007;22:30–9. doi: 10.1152/physiol.00035.2006 17289928.

60. Bai L, Zhou Y, Ma X, Gao L, Song CP. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth. Plant signaling & behavior. 2014;9(8):e29582. doi: 10.4161/psb.29582 25763633; PubMed Central PMCID: PMC4205142.

61. Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular microbiology. 2002;46(5):1319–33. doi: 10.1046/j.1365-2958.2002.03246.x 12453218.

62. Fernandes TR, Segorbe D, Prusky D, Di Pietro A. How alkalinization drives fungal pathogenicity. PLoS pathogens. 2017;13(11):e1006621. doi: 10.1371/journal.ppat.1006621 29121119; PubMed Central PMCID: PMC5679519.

63. Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS pathogens. 2017;13(2):e1006149. doi: 10.1371/journal.ppat.1006149 28231317; PubMed Central PMCID: PMC5322887.

64. Holsbeeks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM. The eukaryotic plasma membrane as a nutrient-sensing device. Trends in biochemical sciences. 2004;29(10):556–64. doi: 10.1016/j.tibs.2004.08.010 15450611.

65. Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Frontiers in pharmacology. 2018;9:191. doi: 10.3389/fphar.2018.00191 29662449; PubMed Central PMCID: PMC5890159.

66. Bechet J, Greenson M, Wiame JM. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. European journal of biochemistry / FEBS. 1970;12(1):31–9. doi: 10.1111/j.1432-1033.1970.tb00817.x 5434281.

67. Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic acids research. 1992;20(6):1425. doi: 10.1093/nar/20.6.1425 1561104; PubMed Central PMCID: PMC312198.

68. Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994;10(13):1793–808. doi: 10.1002/yea.320101310 7747518.

69. Jacobs P, Jauniaux JC, Grenson M. A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae. Journal of molecular biology. 1980;139(4):691–704. doi: 10.1016/0022-2836(80)90055-8 6251229.

70. Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry. 1987;166(2):368–79. doi: 10.1016/0003-2697(87)90587-2 2449095.

71. De Craene JO, Soetens O, Andre B. The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. The Journal of biological chemistry. 2001;276(47):43939–48. doi: 10.1074/jbc.M102944200 11500493.

72. Mayer M, Ludewig U. Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant biology. 2006;8(4):522–8. doi: 10.1055/s-2006-923877 16917981.

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2020 Číslo 2

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×