Characterisation of canine KCNIP4: A novel gene for cerebellar ataxia identified by whole-genome sequencing two affected Norwegian Buhund dogs


Autoři: Christopher A. Jenkins aff001;  Lajos Kalmar aff002;  Kaspar Matiasek aff003;  Lorenzo Mari aff004;  Kaisa Kyöstilä aff005;  Hannes Lohi aff005;  Ellen C. Schofield aff001;  Cathryn S. Mellersh aff001;  Luisa De Risio aff004;  Sally L. Ricketts aff001
Působiště autorů: Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, United Kingdom aff001;  Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom aff002;  Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, München, Germany aff003;  Neurology/Neurosurgery Service, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, United Kingdom aff004;  Department of Veterinary Biosciences, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland aff005;  Folkhälsan Research Center, Helsinki, Finland aff006
Vyšlo v časopise: Characterisation of canine KCNIP4: A novel gene for cerebellar ataxia identified by whole-genome sequencing two affected Norwegian Buhund dogs. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008527
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008527

Souhrn

A form of hereditary cerebellar ataxia has recently been described in the Norwegian Buhund dog breed. This study aimed to identify the genetic cause of the disease. Whole-genome sequencing of two Norwegian Buhund siblings diagnosed with progressive cerebellar ataxia was carried out, and sequences compared with 405 whole genome sequences of dogs of other breeds to filter benign common variants. Nine variants predicted to be deleterious segregated among the genomes in concordance with an autosomal recessive mode of inheritance, only one of which segregated within the breed when genotyped in additional Norwegian Buhunds. In total this variant was assessed in 802 whole genome sequences, and genotyped in an additional 505 unaffected dogs (including 146 Buhunds), and only four affected Norwegian Buhunds were homozygous for the variant. The variant identified, a T to C single nucleotide polymorphism (SNP) (NC_006585.3:g.88890674T>C), is predicted to cause a tryptophan to arginine substitution in a highly conserved region of the potassium voltage-gated channel interacting protein KCNIP4. This gene has not been implicated previously in hereditary ataxia in any species. Evaluation of KCNIP4 protein expression through western blot and immunohistochemical analysis using cerebellum tissue of affected and control dogs demonstrated that the mutation causes a dramatic reduction of KCNIP4 protein expression. The expression of alternative KCNIP4 transcripts within the canine cerebellum, and regional differences in KCNIP4 protein expression, were characterised through RT-PCR and immunohistochemistry respectively. The voltage-gated potassium channel protein KCND3 has previously been implicated in spinocerebellar ataxia, and our findings suggest that the Kv4 channel complex KCNIP accessory subunits also have an essential role in voltage-gated potassium channel function in the cerebellum and should be investigated as potential candidate genes for cerebellar ataxia in future studies in other species.

Klíčová slova:

Cerebellum – Dogs – Genome analysis – Mammalian genomics – Norwegian people – Pets and companion animals – Ataxia – Cerebellar ataxia


Zdroje

1. Akbar U, Ashizawa T. Ataxia. Neurologic clinics. 2015;33(1):225–48. doi: 10.1016/j.ncl.2014.09.004 25432731; PubMed Central PMCID: PMC4251489.

2. Matilla-Dueñas A, Corral-Juan M, Volpini V, Sanchez I. The Spinocerebellar Ataxias: Clinical Aspects And Molecular Genetics. In: Ahmad SI, editor. Neurodegenerative Diseases. New York, NY: Springer US; 2012. p. 351–74.

3. Urkasemsin G, Olby NJ. Canine hereditary ataxia. Vet Clin North Am Small Anim Pract. 2014;44(6):1075–89. doi: 10.1016/j.cvsm.2014.07.005 25441626.

4. Forman OP, De Risio L, Matiasek K, Platt S, Mellersh C. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1. Mamm Genome. 2015;26(1–2):108–17. doi: 10.1007/s00335-014-9547-6 25354648; PubMed Central PMCID: PMC4305091.

5. Fenn J, Boursnell M, Hitti RJ, Jenkins CA, Terry RL, Priestnall SL, et al. Genome sequencing reveals a splice donor site mutation in the SNX14 gene associated with a novel cerebellar cortical degeneration in the Hungarian Vizsla dog breed. BMC Genet. 2016;17(1):123. doi: 10.1186/s12863-016-0433-y 27566131; PubMed Central PMCID: PMC5002145.

6. Letko A, Dietschi E, Nieburg M, Jagannathan V, Gurtner C, Oevermann A, et al. A Missense Variant in SCN8A in Alpine Dachsbracke Dogs Affected by Spinocerebellar Ataxia. Genes (Basel). 2019;10(5). doi: 10.3390/genes10050362 31083464; PubMed Central PMCID: PMC6562999.

7. Mauri N, Kleiter M, Leschnik M, Hogler S, Dietschi E, Wiedmer M, et al. A Missense Variant in KCNJ10 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA1). G3 (Bethesda). 2017;7(2):663–9. doi: 10.1534/g3.116.038455 28007838; PubMed Central PMCID: PMC5295610.

8. Van Poucke M, Stee K, Sonck L, Stock E, Bosseler L, Van Dorpe J, et al. Truncating SLC12A6 variants cause different clinical phenotypes in humans and dogs. Eur J Hum Genet. 2019;27(10):1561–8. doi: 10.1038/s41431-019-0432-3 31160700.

9. Online Mendelian Inheritance in Animals, OMIA: Sydney School of Veterinary Science; 2019. Available from: http://omia.org/.

10. Mhlanga-Mutangadura T, Johnson GS, Ashwini A, Shelton GD, Wennogle SA, Johnson GC, et al. A Homozygous RAB3GAP1:c.743delC Mutation in Rottweilers with Neuronal Vacuolation and Spinocerebellar Degeneration. J Vet Intern Med. 2016;30(3):813–8. doi: 10.1111/jvim.13921 26968732; PubMed Central PMCID: PMC4913561.

11. Rohdin C, Gilliam D, O'Leary CA, O'Brien DP, Coates JR, Johnson GS, et al. A KCNJ10 mutation previously identified in the Russell group of terriers also occurs in Smooth-Haired Fox Terriers with hereditary ataxia and in related breeds. Acta Vet Scand. 2015;57(1):26. doi: 10.1186/s13028-015-0115-1 25998802; PubMed Central PMCID: PMC4445810.

12. Mauri N, Kleiter M, Dietschi E, Leschnik M, Hogler S, Wiedmer M, et al. A SINE Insertion in ATP1B2 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA2). G3 (Bethesda). 2017;7(8):2729–37. doi: 10.1534/g3.117.043018 28620085; PubMed Central PMCID: PMC5555477.

13. Kyostila K, Cizinauskas S, Seppala EH, Suhonen E, Jeserevics J, Sukura A, et al. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet. 2012;8(6):e1002759. doi: 10.1371/journal.pgen.1002759 22719266; PubMed Central PMCID: PMC3375262.

14. Agler C, Nielsen DM, Urkasemsin G, Singleton A, Tonomura N, Sigurdsson S, et al. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24. PLoS Genet. 2014;10(2):e1003991. doi: 10.1371/journal.pgen.1003991 24516392; PubMed Central PMCID: PMC3916225.

15. Forman OP, De Risio L, Mellersh CS. Missense mutation in CAPN1 is associated with spinocerebellar ataxia in the Parson Russell Terrier dog breed. PloS One. 2013;8(5):e64627. doi: 10.1371/journal.pone.0064627 23741357; PubMed Central PMCID: PMC3669408.

16. Forman OP, De Risio L, Stewart J, Mellersh CS, Beltran E. Genome-wide mRNA sequencing of a single canine cerebellar cortical degeneration case leads to the identification of a disease associated SPTBN2 mutation. BMC Genet. 2012;13:55. doi: 10.1186/1471-2156-13-55 22781464; PubMed Central PMCID: PMC3413603.

17. Gilliam D, O'Brien DP, Coates JR, Johnson GS, Johnson GC, Mhlanga-Mutangadura T, et al. A homozygous KCNJ10 mutation in Jack Russell Terriers and related breeds with spinocerebellar ataxia with myokymia, seizures, or both. J Vet Intern Med. 2014;28(3):871–7. doi: 10.1111/jvim.12355 24708069; PubMed Central PMCID: PMC4238845.

18. Mari L, Matiasek K, Jenkins CA, De Stefani A, Ricketts SL, Forman O, et al. Hereditary ataxia in four related Norwegian Buhunds. J Am Vet Med Assoc. 2018;253(6):774–80. doi: 10.2460/javma.253.6.774 30179085.

19. Jagannathan V, Drogemuller C, Leeb T, Dog Biomedical Variant Database C. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet. 2019;50(6):695–704. doi: 10.1111/age.12834 31486122.

20. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81. doi: 10.1038/nprot.2009.86 19561590.

21. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. doi: 10.1038/nmeth0410-248 20354512; PubMed Central PMCID: PMC2855889.

22. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2. doi: 10.1038/nmeth.2890 24681721.

23. Pruunsild P, Timmusk T. Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics. 2005;86(5):581–93. doi: 10.1016/j.ygeno.2005.07.001 16112838.

24. Yin S, Ding F, Dokholyan NV. Eris: an automated estimator of protein stability. Nat Methods. 2007;4(6):466–7. doi: 10.1038/nmeth0607-466 17538626.

25. Gan-Or Z, Bouslam N, Birouk N, Lissouba A, Chambers DB, Veriepe J, et al. Mutations in CAPN1 Cause Autosomal-Recessive Hereditary Spastic Paraplegia. Am J Hum Genet. 2016; 98(5):1038–46. doi: 10.1016/j.ajhg.2016.04.002 27153400; PubMed Central PMCID: PMC4908182.

26. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000;403(6769):553–6. doi: 10.1038/35000592 10676964.

27. Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, et al. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J Biol Chem. 2002;277(17):14965–75. doi: 10.1074/jbc.M200897200 11847232.

28. Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, den Dunnen WF, et al. Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol. 2012;72(6):870–80. doi: 10.1002/ana.23700 23280838.

29. Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72(6):859–69. doi: 10.1002/ana.23701 23280837; PubMed Central PMCID: PMC4085146.

30. Smets K, Duarri A, Deconinck T, Ceulemans B, van de Warrenburg BP, Züchner S, et al. First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy. BMC Med Genet. 2015;16:51. Epub 2015/07/21. doi: 10.1186/s12881-015-0200-3 26189493; PubMed Central PMCID: PMC4557545.

31. Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94. doi: 10.1093/brain/awx081 28444220.

32. Kurihara M, Ishiura H, Sasaki T, Otsuka J, Hayashi T, Terao Y, et al. Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. Cerebellum. 2018;17(2):237–42. doi: 10.1007/s12311-017-0883-4 28895081.

33. Duarri A, Lin MC, Fokkens MR, Meijer M, Smeets CJ, Nibbeling EA, et al. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci. 2015;72(17):3387–99. Epub 2015/04/09. doi: 10.1007/s00018-015-1894-2 25854634; PubMed Central PMCID: PMC4531139.

34. Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, et al. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci U S A. 2002;99(2):1035–40. doi: 10.1073/pnas.022509299 11805342; PubMed Central PMCID: PMC117799.

35. Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, et al. Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation. J Biol Chem. 2009;284(8):4960–7. doi: 10.1074/jbc.M807704200 19109250.

36. Norris AJ, Foeger NC, Nerbonne JM. Interdependent roles for accessory KChIP2, KChIP3, and KChIP4 subunits in the generation of Kv4-encoded IA channels in cortical pyramidal neurons. J Neurosci. 2010;30(41):13644–55. doi: 10.1523/JNEUROSCI.2487-10.2010 20943905; PubMed Central PMCID: PMC2993613.

37. Zhou J, Tang Y, Zheng Q, Li M, Yuan T, Chen L, et al. Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits. Biophys J. 2015;108(11):2658–69. doi: 10.1016/j.bpj.2015.04.024 26039167; PubMed Central PMCID: PMC4457479.

38. Strassle BW, Menegola M, Rhodes KJ, Trimmer JS. Light and electron microscopic analysis of KChIP and Kv4 localization in rat cerebellar granule cells. J Comp Neurol. 2005;484(2):144–55. doi: 10.1002/cne.20443 15736227.

39. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. doi: 10.1038/nbt.1754 21221095; PubMed Central PMCID: PMC3346182.

40. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi: 10.1093/bioinformatics/btp324 19451168; PubMed Central PMCID: PMC2705234.

41. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110 20644199; PubMed Central PMCID: PMC2928508.

42. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. doi: 10.1186/s13059-016-0974-4 27268795; PubMed Central PMCID: PMC4893825.

43. Tozaki T, Mashima S, Hirota K, Miura N, Choi-Miura NH, Tomita M. Characterization of equine microsatellites and microsatellite-linked repetitive elements (eMLREs) by efficient cloning and genotyping methods. DNA Res. 2001;8(1):33–45. doi: 10.1093/dnares/8.1.33 11258798.

44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 15264254.

45. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2014;47:5.6.1–32. doi: 10.1002/0471250953.bi0506s47 25199792.

46. Shapovalov MV, Dunbrack RL Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 2011;19(6):844–58. doi: 10.1016/j.str.2011.03.019 21645855; PubMed Central PMCID: PMC3118414.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Imunitní trombocytopenie (ITP) u dospělých pacientů
nový kurz
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais

White paper - jak vidíme optimální péči o zubní náhrady
Autoři: MUDr. Jindřich Charvát, CSc.

Hemofilie - série kurzů

Faktory ovlivňující léčbu levotyroxinem
Autoři:

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×