FLEXIBLE TEG ON THE ANKLE FOR MEASURING THE POWER GENERATED WHILE PERFORMING ACTIVITIES OF DAILY LIVING


Autoři: Antonino Proto ;  Lukas Peter ;  Martin Augustynek ;  Martin Cerny ;  And Marek Penhaker
Působiště autorů: Department of Cybernetics and Biomedical Engineering, VSB-TUO, Ostrava, Czech Republic
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 3, 2018, 48, 84-90
Kategorie: Original research

Souhrn

In this work, a commercial flexible thermoelectric generator (f-TEG) was used to harvest the body thermal energy during the execution of activities of daily living (ADL). The f-TEG was placed at the level of the ankle, and the performed activities were sitting at the desk and walking. In the first stage of measurements, tests were performed to choose the value of the resistor load that maximizes the power output. Then, while performing ADL, the values of generated power were in the range from 100 to 450 µW. Moreover, while users are walking, the pattern of the output signal of f-TEG is compatible to a sine function with frequency close to that one of human gait. This preliminary result may represent a new way to study the movement of human body to recognize ADL.

Keywords:

thermoelectricity, thermal energy harvesting, flexible TEG, wearable, human body, activities of daily living


Zdroje
  1. Tricoli, A., Nasiri, N., De, S.: Wearable and miniaturized sensor technologies for personalized and preventive medicine. Advanced Functional Materials, 2017, vol. 27, no. 15, 1605271.

  2. Godfrey, A., Hetherington, V., Shum, H., Bonato, P., Lovell, N. H., Stuart, S.: From A to Z: wearable technology explained. Maturitas, 2018, vol. 113, pp. 40–47.

  3. Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., Proto, A., Schmid, M.: The effect of window length on the classification of dynamic activities through a single accelerometer. Proceed-ings of the IASTED International Conference Biomedical Engi-neering, 2014, vol. 2325, pp. 123–127.

  4. Karchňák, J., Šimšík, D., Siman, D., More, M.: Utilizing of mems sensors in rehabilitation process. Lekar a Technika, 2013, vol. 43, no. 4, pp. 28–31.

  5. Caramia, C., Bernabucci, I., Conforto, S., De Marchis, C., Proto, A., Schmid, M.: Spatio-temporal gait parameters as estimated from wearable sensors placed at different waist levels. Proceedings of IEEE EMBS Biomedical Engineering and Sciences Conference, 2016, pp. 727–730.

  6. Lopot, F.: Wearable artificial kidney – evolution of its concepts and current state-of-the-art. Lekar a Technika, 2013, vol. 43, no. 2, pp. 5–12.

  7. Fida, B., Proto, A., Bibbo, D., Conforto, S., Bernabucci, I., Schmid, M.: Real time event-based segmentation to classify locomotion activities through a single inertial sensor. Proceed-ings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, 2015, pp. 104–107.

  8. Stredova, M., Sorfova, M., Socha, V., Kutilek, P.: Biofeedback as a neurobiomechanical aspect of postural function. Lekar a Technika, 2017, vol. 47, no. 1, pp. 19–22.

  9. Proto, A., Bibbo, D., Conforto, S., Schmid, M. A new micro-controller-based system to optimize the digital conversion of signals originating from load cells built-in into pedals. Pro-ceedings of IEEE Biomedical Circuits and Systems Conference, 2014, pp. 300–303.

  10. Vavrinský, E., Donoval, M., Daricek, M., Horinek, F., Popovic, M., Hanic, M., Jagelka, M.: Monitoring of EMG to force ratio using new designed precise wireless sensor system. Lekar a Technika, 2014, vol. 44, no. 3, 2014, pp. 17–22.

  11. Jagelka, M., Jeleň, M., Vavrinský, E., Daříček, M., Donoval, M.: Implementation of pulse oximetry measurement to wireless biosignals probe. Lekar a Technika, 2014, vol. 44, no. 3, 2014, pp. 37–40.

  12. Milenković, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: Issues and an implementa-
    tion.
    Computer Communications, 2006, vol. 29, no. 13–14, pp. 2521–2533.

  13. Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Solid-State Elec-tronics, 2009, vol. 53, no. 7, pp. 684–693.

  14. Zhou, M., Al-Furjan, M. S. H., Zou, J., Liu, W.: A review on heat and mechanical energy harvesting from human – Princi-ples, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp. 3582–3609.

  15. Proto, A., Penhaker, M., Conforto, S., Schmid, M. Nanogenera-tors for Human Body Energy Harvesting. Trends in Biotechnol-ogy, 2017, vol. 35, no. 7, pp. 610–624.

  16. Proto, A., Penhaker, M., Bibbo, D., Vala, D., Conforto, S., Schmid, M.: Measurements of Generated Energy-Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting. Sensors, 2016, vol. 16, no. 4, 524.

  17. Proto, A., Bibbo, D., Cerny, M., Vala, D., Kasik, V., Peter, L., Conforto, S., Schmid, M., Penhaker, M.: Thermal energy har-vesting on the bodily surfaces of arms and legs through a wearable thermo-electric generator. Sensors, 2018, vol. 18, no. 6, 1927.

  18. Seebeck, T. J.: Magnetic Polarization of Metals and Minerals by Temperature Differences. Treatises of the Royal Academy of Sciences, 1822, 265, 1822–1823.

  19. Rajtukova, V., Zivcak, J., Michalikova, M., Toth, T.: Methodol-ogy of thermographic atlas of the human body. Lekar a Tech-nika, vol. 42, no. 4, pp. 32–35.

  20. Hyland, M., Hunter, H., Liu, J., Veety, E., Vashaee, D.: Wear-able Thermoelectric Generators for human body heat harvesting. Applied Energy, 2016, vol. 182, pp. 518–524.

  21. Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., Yamamoto, S.: Micro thermoelectric modules and their application to wristwatches as an energy source. Proceed-ings of the XVIII International Conference on Thermoelectrics (ICT), 1999.

  22. https://www.powerwatch.com

  23. Torfs, T., Leonov, V., Van Hoof, C., Gyselinckx, B.: Body-heat powered autonomous pulse oximeter. Proceedings of the Con-ference on Sensors, 2006.

  24. Leonov, V., Gyselinckx, B., Van Hoof, C., Torfs, T., Yazicioglu, R. F., Vullers, R. J. M., Fiorini, P.: Wearable self-powered wireless devices with thermoelectric energy scaven-gers. Proceedings of the 2nd European Conference & Exhibi-tion on Integration Issues of Miniaturized Systems—MOMS, MOEMS, ICS and Electronic Components (SSI), 2008.

  25. Yan, J., Liao, X., Yan, D., Chen, Y.: Review of Micro Thermo-electric Generator. Journal of Microelectromechanical Sys-tems, 2018, vol. 27, no. 1, pp. 1–18.

  26. Suarez, F., Parekh, D. P., Ladd, C., Vashaee, D., Dickey, M. D., Ozturk, M. C.: Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy, 2017, vol. 202, pp. 736–745.

  27. Kim, C. S., Lee, G. S., Choi, H., Kim, Y. J., Yang, H. M., Lim, S. H., Lee, S.-G., Cho, B. J.: Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 2018, vol. 214, pp. 131–138.

  28. Deng, F., Qiu, H. B., Chen, J., Wang, L., Wang, B.: Wearable Thermoelectric Power Generators Combined with Flexible Supercapacitor for Low-Power Human Diagnosis Devices. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 2, pp. 1477–1485.

  29. Thielen, M., Kara, G., Unkovic, I., Majoe, D., Hierold, C.: Thermal Harvesting Potential of the Human Body. Journal of Electronic Materials, 2018, vol. 47, no. 6, pp. 3307–3313.

  30. Khalifa, S., Lan, G., Hassan, M., Seneviratne, A., Das, S. K.: HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices. IEEE Transactions on Mobile Computing Volume 17, Issue 6, 1 June 2018, Pages 1353–1368.

  31. Proto, A., Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., Schmid, M., Vlach, K., Kasik, V., Penhaker, M.: Wearable PVDF transducer for biomechanical energy harvesting and gait cycle detection. Proceedings of IEEE EMBS Biomedical Engineering and Sciences Conference, 2016, pp. 62–66.

  32. http://www.tegway.co

  33. Snyder, G. J., Toberer, E. S.: Complex thermoelectric materi-als. Nature Materials, 2008, vol. 7, no. 2, pp. 105–114.

  34. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors, 2015, vol. 15, no. 12, pp. 31314–31338.

  35. Yang, J., Wang, S., Chen, N., Chen, X., Shi, P.: Wearable accelerometer based extendable activity recognition system. Proceedings of IEEE International Conference on Robotics and Automation, 2010, pp. 3641–3647.

  36. http://www.analog.com/en/products/ltc3108.html#product-overview

  37. http://www.emmicroelectronic.com/products/power-management/pmu-dc-energy-harvesting-controller/em8900

  38. https://www.st.com/en/evaluation-tools/steval-smartag1.html

  39. Danion, F., Varraine, E., Bonnard, M., Pailhous, J.: Stride vari-ability in human gait: The effect of stride frequency and stride length. Gait and Posture, 2003, vol. 18, no. 1, pp. 69–77.

  40. Collet, J., Cerny, M., Delporte, L., Noury, N.: Effect of the placement of the inertial sensor on the human motion detection. Lekar a Technika, 2015, vol. 44, no. 4, pp. 21–24.

Štítky
Biomedicína
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se