-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaGenomic imprinting: An epigenetic regulatory system
Authors: Marisa S. Bartolomei aff001; Rebecca J. Oakey aff002; Anton Wutz aff003
Authors place of work: Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff001; Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom aff002; D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland aff003
Published in the journal: Genomic imprinting: An epigenetic regulatory system. PLoS Genet 16(8): e1008970. doi:10.1371/journal.pgen.1008970
Category: Editorial
doi: https://doi.org/10.1371/journal.pgen.1008970This series of articles on genomic imprinting and allele-specific expression in X chromosome inactivation honors Dr. Denise Barlow (1950–2017), who was a trail blazer in the field of genomic imprinting. Dr. Barlow was one of the first to identify imprinted genes, which are expressed and regulated in a parent-of-origin–specific manner, and among the first to establish mechanisms of coordinated regulation of imprinted genes in clusters.
Parental-specific chromosome behavior was noted in arthropods and marsupials more than 50 years ago. In mammals, inheritance patterns of observable phenotypes also suggested parent-of-origin–specific effects. In humans for example, cytological deletions of a small part of chromosome 15 had been associated with Prader–Willi and Angelman syndromes, whereby the paternally or maternally derived chromosome carried a deletion, respectively. Similarly, in mice classical geneticists generated and studied chromosome translocations to map genes. Some of these mouse strains showed parental-specific inheritance of phenotypes. From these studies the hairpin-tail mouse came to light, which carried a large deletion of chromosome 17 and demonstrated midgestation overgrowth and lethality when maternally transmitted. In contrast, paternal inheritance of the same deletion resulted in viable and fertile mice [1]. Dr. Barlow was insightful enough to seize upon these non-Mendelian patterns to develop the model for the career-long pursuit of gene regulatory mechanisms at this locus. These mice were critical reagents used by Dr. Barlow to clone Igf2r, one of the first identified imprinted genes [2]. Since that time, hundreds of imprinted genes have been identified, with the majority exhibiting conserved expression patterns among mammals.
Studies focusing on the regulation of imprinting were motivated by the observation that an active and inactive allele of a gene were present in the same nucleus and exposed to the same transcription factors but behaved differently. It became apparent that information along the DNA of the gene was responsible for “remembering” the parent of origin. Imprinted genes have many notable features that set them apart from the vast majority of the genome. First, imprinted genes exhibit parental-allele–specific DNA methylation at discrete elements, which is added in the germline and maintained through a phase of extensive reprogramming that occurs after fertilization in other parts of the genome. These elements are termed imprinting control regions (ICR) or imprinting control elements (ICE), as denoted by Barlow, and are critical for the appropriate allele-specific expression of adjacent gene(s). Barlow also was the first to describe secondary differentially methylated regions, which were acquired postfertilization, and are established as a consequence of imprinted gene expression. The discovery of DNA methylation at ICRs opened up the concept of DNA methylation acting as a widespread essential genomic regulatory device. In 1993, Denise Barlow proposed the novel idea that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons [3]. In this collection, Walsh and colleagues revisit this model and describe the machinery for acquisition and maintenance of DNA methylation at imprinted loci [4].
The vast majority of imprinted genes are located in clusters throughout the genome and are jointly regulated, typically through shared ICRs. Deletion of ICRs or perturbation of their allelic DNA-methylation patterns can cause loss of imprinting of multiple genes in cis. Key to understanding imprinting in many clusters is the presence of long noncoding (lnc) RNAs. Barlow and colleagues identified the first lncRNA at the Igf2r locus, Airn, whose greater than 100 kb transcript is initiated from the unmethylated ICR residing in an Igf2r intron. LncRNAs have multiple functions at imprinted (as well as other) loci. With respect to the Igf2r locus, many years of elegant experiments by the Barlow laboratory demonstrated that the lncRNA was not required for imprinting in the embryo proper but, rather, that Airn transcriptional overlap through the Igf2r promoter precludes RNA polymerase II recruitment [5]. MacDonald and Mann detail our current understanding of lncRNA functions through their transcription as well as their RNA product [6]. With respect to their RNA product, some lncRNAs are precursors of smaller RNAs or serve as scaffolds, guides, or architectural components. A recent investigation of Airn in regulating distant imprinted genes in mouse placenta rules out an enhancer and transcription interference-based mechanism [7]. This result points to distinct mechanisms regarding how Airn regulates the proximal Igf2r and more distant imprinted genes.
Early on, models that sought to explain why diploid mammals would support functional haploidy at imprinted genes suggested that these genes play important roles in growth of the fetus, in part balancing the conflicts between mother and father. It has become increasingly clear that imprinted genes have unique functions in the placenta, some genes of which are only expressed and/or imprinted in the placenta. Moreover, their regulation may differ from genes that are imprinted in the soma. In this collection, Courtney Hannah discusses the function and regulation of imprinted genes in the placenta, with special consideration given to the role of endogenous retroviruses (ERVs) in mediating placental-specific imprinting [8].
Because of the unusual nature of imprinting, the identification and study of imprinted genes have driven the adaption and modification of methods and, in some cases, necessitated the development of new technology. Denise Barlow embraced technology from the early days of positional cloning of genes, to the use of mouse knockout strategies for the study of regulatory elements and the requirement of lncRNAs, to the use of microarrays for identifying novel lncRNAs and characterizing chromatin structure at imprinted gene clusters. As described by Li and Li, the earliest studies of imprinting employed elegant embryological and genetic tools [9]. Initially, these tools were used to show the functional nonequivalence of the parental genomes and to map putative chromosomal locations of imprinted genes. Ultimately, the identification of imprinted genes relied on uniparental embryos and technologies that distinguish parental alleles in hybrid animals. More recently, high throughput technologies have facilitated the study of epigenetic processes and have benefitted from added read depth and the ability to study DNA modifications. Additionally, nuclear transplantation, haploid embryonic stem cells combined with site-directed deletions have more recently shown that the main block to uniparental embryo development is caused by imprinted gene expression.
Importantly, as the field of genomic imprinting matured, so did studies of X chromosome inactivation, a mechanism for mammals to achieve dosage compensation between females with two X chromosomes and males with one. In mice and marsupials, imprinted expression of the X chromosome was noted prior to the identification of imprinted genes. Although most mammals exhibit random X inactivation in somatic cells, paternal-specific inactivation of one of the two X chromosomes is observed in all cells of female marsupials and in mouse placentas. Due to overlap and similarities, including the role of the master regulator lncRNAs Xist and Rsx, investigators in these fields would learn from each other, often employing similar technologies and strategies to elucidate mechanisms. In this collection, Loda and Heard describe the role of Xist RNA and how it works to silence one X chromosome in cis [10].
Although genomic imprinting is itself a critical and fascinating topic, with important implications for human disease, Denise Barlow always argued that genomic imprinting was an influential model for mammalian epigenetic regulation. Insight gained from imprinted genes also helps to understand other important mechanisms of monoallelic expression, including immune and olfactory receptor gene expression, which is random rather than parent-of-origin specific in mammals. Given the need to maintain parental identity of imprinted genes from the gametes over many cell divisions in development, epigenetic mechanisms are essential for such processes. Although much has been learned, much remains to be determined in the imprinting field. Access to embryos at very early stages as well as technologies that facilitate single cell analysis will undoubtedly contribute to answering many remaining questions this field. The manuscripts in this series will provide historical perspective as well as insights from studying imprinting that have broad implications for biology. There is absolutely no doubt to the lasting legacy of Denise Barlow.
Zdroje
1. Johnson DR. Hairpin-tail: a case of postreductional gene action in the mouse egg. Genetics. 1974;76 : 795–805 4838760
2. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991;349 : 84–87. doi: 10.1038/349084a0 1845916
3. Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993;73 : 61–71. doi: 10.1016/0092-8674(93)90160-r 8462104
4. Ondičová M, Oakey RJ, Walsh CP. Is imprinting the result of “friendly fire” by the host defense system? PLoS Genet. 2020;16: e1008599. doi: 10.1371/journal.pgen.1008599 32271759
5. Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science. 2012;338 : 1469–1472. doi: 10.1126/science.1228110 23239737
6. MacDonald W.A., Mann M.R.W. Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet. 2020. doi: 10.1371/journal.pgen.1008930
7. Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl H-C, Shimizu T, et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 2019;15: e1008268. doi: 10.1371/journal.pgen.1008268 31329595
8. Hanna CW. Placental imprinting: Emerging mechanisms and functions. PLoS Genet. 2020;16: e1008709. doi: 10.1371/journal.pgen.1008709 32324732
9. Li Y, Li J. Technical advances contribute to the study of genomic imprinting. PLoS Genet. 2019;15: e1008151. doi: 10.1371/journal.pgen.1008151 31220079
10. Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet. 2019;15: e1008333. doi: 10.1371/journal.pgen.1008333 31537017
Článek A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individualsČlánek Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeastČlánek Costly GenesČlánek A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer proteinČlánek The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 8- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans
- Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast
- Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca
- Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- Transcriptional regulators of the Golli/myelin basic protein locus integrate additive and stealth activities
- Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics
- DAnkrd49 and Bdbt act via Casein kinase Iε to regulate planar polarity in Drosophila
- Costly Genes
- Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences
- Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph
- Learning the properties of adaptive regions with functional data analysis
- Epistatic interactions between killer immunoglobulin-like receptors and human leukocyte antigen ligands are associated with ankylosing spondylitis
- Endogenization and excision of human herpesvirus 6 in human genomes
- A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli
- On the cross-population generalizability of gene expression prediction models
- How many familial relationship testing results could be wrong?
- Long noncoding RNA functionality in imprinted domain regulation
- Horizontal transmission and recombination maintain forever young bacterial symbiont genomes
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
- Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69
- A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study
- THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis
- Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility
- Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease
- Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing
- Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila
- Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss
- Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane
- Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development
- Genomic imprinting: An epigenetic regulatory system
- Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins
- Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system
- Systematic identification of functional SNPs interrupting 3’UTR polyadenylation signals
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension
- Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model
- The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
- Distinct and sequential re-replication barriers ensure precise genome duplication
- Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2
- Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA
- Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p
- Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies
- Pan-genomic open reading frames: A potential supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction
- The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi
- Serotonergic modulation of visual neurons in Drosophila melanogaster
- Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Genomic imprinting: An epigenetic regulatory system
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání