Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance


Autoři: Helen E. McNeil aff001;  Ilyas Alav aff001;  Ricardo Corona Torres aff002;  Amanda E. Rossiter aff001;  Eve Laycock aff001;  Simon Legood aff001;  Inderpreet Kaur aff001;  Matthew Davies aff001;  Matthew Wand aff003;  Mark A. Webber aff004;  Vassiliy N. Bavro aff002;  Jessica M. A. Blair aff001
Působiště autorů: Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom aff001;  School of Life Sciences, University of Essex, Colchester, United Kingdom aff002;  Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, United Kingdom aff003;  Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom aff004
Vyšlo v časopise: Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008101
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008101

Souhrn

Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or “binding boxes” within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.

Klíčová slova:

Binding analysis – Bromides – Methylene blue – Multiple alignment calculation – Phenotypes – Salmonella – Sequence alignment – Sequence analysis


Zdroje

1. Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–77. doi: 10.2217/fmb.14.66 25405886.

2. Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol. 2015;6:513. doi: 10.3389/fmicb.2015.00513 26074901; PubMed Central PMCID: PMC4446572.

3. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018. Epub 2018/07/14. doi: 10.1038/s41579-018-0048-6 30002505.

4. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother. 2004;48(10):3729–35. Epub 2004/09/25. doi: 10.1128/AAC.48.10.3729-3735.2004 15388427; PubMed Central PMCID: PMC521921.

5. Pumbwe L, Randall LP, Woodward MJ, Piddock LJV. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. Journal of Antimicrobial Chemotherapy. 2004;54(2):341–7. doi: 10.1093/jac/dkh331 15201231

6. Kvist M, Hancock V, Klemm P. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation. Applied and Environmental Microbiology. 2008;74(23):7376–82. doi: 10.1128/AEM.01310-08 18836028

7. Baugh S, Ekanayaka AS, Piddock LJV, Webber MA. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. Journal of Antimicrobial Chemotherapy. 2012;67(10):2409–17. doi: 10.1093/jac/dks228 22733653

8. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;59(1):126–41. doi: 10.1111/j.1365-2958.2005.04940.x 16359323.

9. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, et al. The AcrAB–TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol. 2006;8(5):847–56. doi: 10.1111/j.1462-5822.2005.00671.x 16611233

10. Blair JMA, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. Journal of Antimicrobial Chemotherapy. 2015;70(2):424–31. doi: https://doi.org/10.1093/jac/dku380 25288678

11. Buckner MM, Blair JM, La Ragione RM, Newcombe J, Dwyer DJ, Ivens A, et al. Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. MBio. 2016;7(6). Epub 2016/11/24. doi: 10.1128/mBio.01916-16 27879336; PubMed Central PMCID: PMC5120143.

12. Song S, Lee B, Yeom JH, Hwang S, Kang I, Cho JC, et al. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium. Infect Immun. 2015;83(11):4266–76. Epub 2015/08/19. doi: 10.1128/IAI.00653-15 26283336; PubMed Central PMCID: PMC4598412.

13. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000;182(6):1754–6. Epub 2000/02/29. doi: 10.1128/jb.182.6.1754-1756.2000 10692383; PubMed Central PMCID: PMC94475.

14. Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Rationale behind the Differential Substrate Specificity of Bacterial RND Multi-Drug Transporters. Sci Rep. 2017;7(1):8075. Epub 2017/08/16. doi: 10.1038/s41598-017-08747-8 28808284; PubMed Central PMCID: PMC5556075.

15. Horiyama T, Nishino K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS One. 2014;9(9):e108642. Epub 2014/09/27. doi: 10.1371/journal.pone.0108642 25259870; PubMed Central PMCID: PMC4178200.

16. Kobayashi K, Tsukagoshi N, Aono R. Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element. J Bacteriol. 2001;183(8):2646–53. Epub 2001/03/29. doi: 10.1128/JB.183.8.2646-2653.2001 11274125; PubMed Central PMCID: PMC95182.

17. Yamasaki S, Nagasawa S, Hayashi-Nishino M, Yamaguchi A, Nishino K. AcrA dependency of the AcrD efflux pump in Salmonella enterica serovar Typhimurium. J Antibiot (Tokyo). 2011;64(6):433–7. Epub 2011/04/21. doi: 10.1038/ja.2011.28 21505470.

18. Smith HE, Blair JMA. Redundancy in the periplasmic adaptor proteins AcrA and AcrE provides resilience and an ability to export substrates of multidrug efflux. Journal of Antimicrobial Chemotherapy. 2014:dkt481.

19. Lau SY, Zgurskaya HI. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol. 2005;187(22):7815–25. Epub 2005/11/04. doi: 10.1128/JB.187.22.7815-7825.2005 16267305; PubMed Central PMCID: PMC1280316.

20. Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2010;65(7):1372–6. Epub 2010/05/25. doi: 10.1093/jac/dkq160 20495209.

21. Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, et al. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. ACS Infect Dis. 2016. doi: 10.1021/acsinfecdis.6b00167 27768847.

22. Ayhan DH, Tamer YT, Akbar M, Bailey SM, Wong M, Daly SM, et al. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy. PLoS Biol. 2016;14(9):e1002552. doi: 10.1371/journal.pbio.1002552 27631336; PubMed Central PMCID: PMC5025249.

23. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014;509(7501):512–5. doi: 10.1038/nature13205 24747401; PubMed Central PMCID: PMC4361902.

24. Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife. 2017;6. Epub 2017/03/30. doi: 10.7554/eLife.24905 28355133; PubMed Central PMCID: PMC5404916.

25. Fitzpatrick AWP, Llabres S, Neuberger A, Blaza JN, Bai XC, Okada U, et al. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol. 2017;2:17070. doi: 10.1038/nmicrobiol.2017.70 28504659; PubMed Central PMCID: PMC5447821.

26. Daury L, Orange F, Taveau JC, Verchere A, Monlezun L, Gounou C, et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun. 2016;7:10731. doi: 10.1038/ncomms10731 26867482; PubMed Central PMCID: PMC4754349.

27. Tikhonova EB, Yamada Y, Zgurskaya HI. Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol. 2011;18(4):454–63. Epub 2011/04/26. doi: 10.1016/j.chembiol.2011.02.011 21513882; PubMed Central PMCID: PMC3082741.

28. Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature. 2011;470(7335):558–62. Epub 2011/02/26. doi: 10.1038/nature09743 21350490; PubMed Central PMCID: PMC3078058.

29. Fernandez-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol. 2004;335(3):843–65. Epub 2003/12/23. doi: 10.1016/j.jmb.2003.10.069 14687579.

30. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A. 2009;106(17):7173–8. Epub 2009/04/04. doi: 10.1073/pnas.0900693106 19342493; PubMed Central PMCID: PMC2678420.

31. Ntreh AT, Weeks JW, Nickels LM, Zgurskaya HI. Opening the Channel: the Two Functional Interfaces of Pseudomonas aeruginosa OpmH with the Triclosan Efflux Pump TriABC. J Bacteriol. 2016;198(23):3176–85. Epub 2016/09/21. doi: 10.1128/JB.00535-16 27645384; PubMed Central PMCID: PMC5105898.

32. Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure. 2006;14(3):577–87. Epub 2006/03/15. doi: 10.1016/j.str.2005.11.015 16531241; PubMed Central PMCID: PMC1997295.

33. De Angelis F, Lee JK, O'Connell JD 3rd, Miercke LJ, Verschueren KH, Srinivasan V, et al. Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems. Proc Natl Acad Sci U S A. 2010;107(24):11038–43. Epub 2010/06/11. doi: 10.1073/pnas.1003908107 20534468; PubMed Central PMCID: PMC2890744.

34. Yum S, Xu Y, Piao S, Sim SH, Kim HM, Jo WS, et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol. 2009;387(5):1286–97. Epub 2009/03/04. doi: 10.1016/j.jmb.2009.02.048 19254725.

35. Lu S, Zgurskaya HI. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity. J Bacteriol. 2013;195(21):4865–72. Epub 2013/08/27. doi: 10.1128/JB.00756-13 23974027; PubMed Central PMCID: PMC3807484.

36. Modali SD, Zgurskaya HI. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol Microbiol. 2011;81(4):937–51. Epub 2011/06/24. doi: 10.1111/j.1365-2958.2011.07744.x 21696464; PubMed Central PMCID: PMC3177148.

37. Jeong H, Kim JS, Song S, Shigematsu H, Yokoyama T, Hyun J, et al. Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheel-like Interaction between AcrA and TolC. Structure. 2016;24(2):272–6. doi: 10.1016/j.str.2015.12.007 26777412.

38. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006;313(5791):1295–8. Epub 2006/09/02. doi: 10.1126/science.1131542 16946072.

39. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature. 2006;443(7108):173–9. doi: 10.1038/nature05076 16915237

40. Xue LC, Dobbs D, Bonvin AM, Honavar V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett. 2015;589(23):3516–26. Epub 2015/10/16. doi: 10.1016/j.febslet.2015.10.003 26460190; PubMed Central PMCID: PMC4655202.

41. Lee M, Jun SY, Yoon BY, Song S, Lee K, Ha NC. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria. PLoS One. 2012;7(7):e40460. Epub 2012/07/14. doi: 10.1371/journal.pone.0040460 22792337; PubMed Central PMCID: PMC3391258.

42. Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q, Krishnamoorthy G. Structural and functional diversity of bacterial membrane fusion proteins. Biochim Biophys Acta. 2009;1794(5):794–807. Epub 2008/12/02. doi: 10.1016/j.bbapap.2008.10.010 19041958.

43. Ricci V, Piddock LJ. Only for substrate antibiotics are a functional AcrAB-TolC efflux pump and RamA required to select multidrug-resistant Salmonella Typhimurium. J Antimicrob Chemother. 2009;64(3):654–7. doi: 10.1093/jac/dkp234 19570753.

44. Ricci V, Tzakas P, Buckley A, Coldham NC, Piddock LJV. Ciprofloxacin-Resistant Salmonella enterica Serovar Typhimurium Strains Are Difficult To Select in the Absence of AcrB and TolC. Antimicrobial Agents and Chemotherapy. 2006;50(1):38–42. doi: 10.1128/AAC.50.1.38-42.2006 16377664

45. Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. 2006;4(8):629–36. Epub 2006/07/18. doi: 10.1038/nrmicro1464 16845433.

46. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438–45. Epub 2014/05/21. doi: 10.1016/j.tim.2014.04.007 24842194.

47. Blair JM, La Ragione RM, Woodward MJ, Piddock LJ. Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2009;64(5):965–72. doi: 10.1093/jac/dkp311 19744979.

48. Wang Y, Venter H, Ma S. Efflux Pump Inhibitors: A Novel Approach to Combat Efflux-Mediated Drug Resistance in Bacteria. Curr Drug Targets. 2016;17(6):702–19. doi: 10.2174/1389450116666151001103948 26424403.

49. Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, et al. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun. 2019;10(1):1520. doi: 10.1038/s41467-019-09463-9 30944318; PubMed Central PMCID: PMC6447562.

50. Tikhonova EB, Wang Q, Zgurskaya HI. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J Bacteriol. 2002;184(23):6499–507. Epub 2002/11/12. doi: 10.1128/JB.184.23.6499-6507.2002 12426337; PubMed Central PMCID: PMC135444.

51. Krishnamoorthy G, Tikhonova EB, Zgurskaya HI. Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol. 2008;190(2):691–8. Epub 2007/11/21. doi: 10.1128/JB.01276-07 18024521; PubMed Central PMCID: PMC2223704.

52. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, et al. Structural basis for the inhibition of bacterial multidrug exporters. Nature. 2013;500(7460):102–6. Epub 2013/07/03. doi: 10.1038/nature12300 23812586.

53. Weeks JW, Bavro VN, Misra R. Genetic assessment of the role of AcrB beta-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli. Mol Microbiol. 2014;91(5):965–75. Epub 2014/01/07. doi: 10.1111/mmi.12508 24386963; PubMed Central PMCID: PMC3984920.

54. Ge Q, Yamada Y, Zgurskaya H. The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J Bacteriol. 2009;191(13):4365–71. Epub 2009/05/05. doi: 10.1128/JB.00204-09 19411330; PubMed Central PMCID: PMC2698478.

55. Blair JM, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJ. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother. 2015;70(2):424–31. Epub 2014/10/08. doi: 10.1093/jac/dku380 25288678; PubMed Central PMCID: PMC4291234.

56. Wang-Kan X, Blair JMA, Chirullo B, Betts J, La Ragione RM, Ivens A, et al. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium. MBio. 2017;8(4). doi: 10.1128/mBio.00968-17 28720734; PubMed Central PMCID: PMC5516257.

57. Zhang CZ, Chang MX, Yang L, Liu YY, Chen PX, Jiang HX. Upregulation of AcrEF in Quinolone Resistance Development in Escherichia coli When AcrAB-TolC Function Is Impaired. Microb Drug Resist. 2018;24(1):18–23. Epub 2017/05/19. doi: 10.1089/mdr.2016.0207 28520511

58. Gouet P, Robert X, Courcelle E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 2003;31(13):3320–3. Epub 2003/06/26. doi: 10.1093/nar/gkg556 12824317; PubMed Central PMCID: PMC168963.

59. Negi SS, Schein CH, Oezguen N, Power TD, Braun W. InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics. 2007;23(24):3397–9. Epub 2007/10/16. doi: 10.1093/bioinformatics/btm474 17933856; PubMed Central PMCID: PMC2636624.

60. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501. Epub 2010/04/13. doi: 10.1107/S0907444910007493 20383002; PubMed Central PMCID: PMC2852313.

61. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344–50. Epub 2016/05/12. doi: 10.1093/nar/gkw408 27166375; PubMed Central PMCID: PMC4987940.

62. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8. Epub 2014/12/31. doi: 10.1038/nmeth.3213 25549265; PubMed Central PMCID: PMC4428668.

63. Wray C, Sojka WJ. Experimental Salmonella typhimurium infection in calves. Res Vet Sci. 1978;25(2):139–43. Epub 1978/09/01. 364573.

64. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5. Epub 2000/06/01. doi: 10.1073/pnas.120163297 10829079; PubMed Central PMCID: PMC18686.

65. Coldham NG, Webber M, Woodward MJ, Piddock LJ. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother. 2010;65(8):1655–63. Epub 2010/06/02. doi: 10.1093/jac/dkq169 20513705.

66. Piddock LJ, Ricci V. Accumulation of five fluoroquinolones by Mycobacterium tuberculosis H37Rv. J Antimicrob Chemother. 2001;48(6):787–91. Epub 2001/12/06. doi: 10.1093/jac/48.6.787 11733462.

67. Wand ME, Muller CM, Titball RW, Michell SL. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011;11(1):11. Epub 2011/01/19. doi: 10.1186/1471-2180-11-11 21241461; PubMed Central PMCID: PMC3025829.

68. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 2002;419(6907):587–93. Epub 2002/10/11. doi: 10.1038/nature01050 12374972.

69. Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstatter L, Verrey F, et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife. 2014;3. Epub 2014/09/24. doi: 10.7554/eLife.03145 25248080; PubMed Central PMCID: PMC4359379.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se