RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases


Autoři: Aurelio Reyes aff001;  Paola Favia aff001;  Sara Vidoni aff001;  Vittoria Petruzzella aff002;  Massimo Zeviani aff001
Působiště autorů: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom aff001;  Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso - Università degli Studi Aldo Moro, Piazza G. Cesare, Bari, Italy aff002
Vyšlo v časopise: RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008923
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008923

Souhrn

Mitochondrial translation defects can be due to mutations affecting mitochondrial- or nuclear-encoded components. The number of known nuclear genes involved in mitochondrial translation has significantly increased in the past years. RCC1L (WBSCR16), a putative GDP/GTP exchange factor, has recently been described to interact with the mitochondrial large ribosomal subunit. In humans, three different RCC1L isoforms have been identified that originate from alternative splicing but share the same N-terminus, RCC1LV1, RCC1LV2 and RCC1LV3. All three isoforms were exclusively localized to mitochondria, interacted with its inner membrane and could associate with homopolymeric oligos to different extent. Mitochondrial immunoprecipitation experiments showed that RCC1LV1 and RCC1LV3 associated with the mitochondrial large and small ribosomal subunit, respectively, while no significant association was observed for RCC1LV2. Overexpression and silencing of RCC1LV1 or RCC1LV3 led to mitoribosome biogenesis defects that resulted in decreased translation. Indeed, significant changes in steady-state levels and distribution on isokinetic sucrose gradients were detected not only for mitoribosome proteins but also for GTPases, (GTPBP10, ERAL1 and C4orf14), and pseudouridylation proteins, (TRUB2, RPUSD3 and RPUSD4). All in all, our data suggest that RCC1L is essential for mitochondrial function and that the coordination of at least two isoforms is essential for proper ribosomal assembly.

Klíčová slova:

Biosynthesis – Elution – Guanosine triphosphatase – HEK 293 cells – Immunoblotting – Mitochondria – Ribosomal RNA – RNA interference


Zdroje

1. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54. Epub 2018/06/29. doi: 10.1038/s41556-018-0124-1 29950572.

2. D’Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62(3):309–20. Epub 2018/07/22. doi: 10.1042/EBC20170102 30030363.

3. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015;348(6232):303–8. Epub 2015/04/04. doi: 10.1126/science.aaa3872 25837512.

4. Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science. 2015;348(6230):95–8. Epub 2015/04/04. doi: 10.1126/science.aaa1193 25838379

5. Boczonadi V, Ricci G, Horvath R. Mitochondrial DNA transcription and translation: clinical syndromes. Essays Biochem. 2018;62(3):321–40. Epub 2018/07/08. doi: 10.1042/EBC20170103 29980628.

6. Shajani Z, Sykes MT, Williamson JR. Assembly of bacterial ribosomes. Annu Rev Biochem. 2011;80:501–26. Epub 2011/05/03. doi: 10.1146/annurev-biochem-062608-160432 21529161.

7. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle. 2015;14(14):2226–50. Epub 2015/06/02. doi: 10.1080/15384101.2015.1053672 26030272

8. Clementi N, Polacek N. Ribosome-associated GTPases: the role of RNA for GTPase activation. RNA Biol. 2010;7(5):521–7. Epub 2010/07/27. doi: 10.4161/rna.7.5.12467 20657179.

9. Kim HJ, Barrientos A. MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res. 2018. Epub 2018/08/08. doi: 10.1093/nar/gky672 30085276.

10. Kotani T, Akabane S, Takeyasu K, Ueda T, Takeuchi N. Human G-proteins, ObgH1 and Mtg1, associate with the large mitochondrial ribosome subunit and are involved in translation and assembly of respiratory complexes. Nucleic Acids Res. 2013;41(6):3713–22. Epub 2013/02/12. doi: 10.1093/nar/gkt079 23396448

11. Lavdovskaia E, Kolander E, Steube E, Mai MM, Urlaub H, Richter-Dennerlein R. The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis. Nucleic Acids Res. 2018. Epub 2018/08/08. doi: 10.1093/nar/gky701 30085210.

12. Maiti P, Kim HJ, Tu YT, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res. 2018. Epub 2018/10/16. doi: 10.1093/nar/gky938 30321378.

13. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, et al. ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation. Nucleic Acids Res. 2010;38(16):5554–68. Epub 2010/05/01. doi: 10.1093/nar/gkq305 20430825

14. He J, Cooper HM, Reyes A, Di Re M, Kazak L, Wood SR, et al. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit. Nucleic Acids Res. 2012;40(13):6097–108. Epub 2012/03/27. doi: 10.1093/nar/gks257 22447445

15. Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta. 2008;1783(8):1467–79. Epub 2008/04/30. doi: 10.1016/j.bbamcr.2008.03.015 18442486.

16. Renault L, Kuhlmann J, Henkel A, Wittinghofer A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell. 2001;105(2):245–55. Epub 2001/05/05. doi: 10.1016/s0092-8674(01)00315-4 11336674.

17. Song C, Liang L, Jin Y, Li Y, Liu Y, Guo L, et al. RCC2 is a novel p53 target in suppressing metastasis. Oncogene. 2018;37(1):8–17. Epub 2017/09/05. doi: 10.1038/onc.2017.306 28869598

18. Sjolinder M, Uhlmann J, Ponstingl H. Characterisation of an evolutionary conserved protein interacting with the putative guanine nucleotide exchange factor DelGEF and modulating secretion. Exp Cell Res. 2004;294(1):68–76. Epub 2004/02/26. doi: 10.1016/j.yexcr.2003.09.033 14980502.

19. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, et al. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 2010;29(6):1116–25. Epub 2010/02/27. doi: 10.1038/emboj.2010.14 20186120

20. Arroyo JD, Jourdain AA, Calvo SE, Ballarano CA, Doench JG, Root DE, et al. A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. Cell Metab. 2016;24(6):875–85. Epub 2016/09/27. doi: 10.1016/j.cmet.2016.08.017 27667664

21. Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL, Shoubridge EA. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 2017;18(1):28–38. Epub 2016/12/16. doi: 10.15252/embr.201643391 27974379

22. Huang G, Massoudi D, Muir AM, Joshi DC, Zhang CL, Chiu SY, et al. WBSCR16 Is a Guanine Nucleotide Exchange Factor Important for Mitochondrial Fusion. Cell Rep. 2017;20(4):923–34. Epub 2017/07/27. doi: 10.1016/j.celrep.2017.06.090 28746876

23. He J, Mao CC, Reyes A, Sembongi H, Di Re M, Granycome C, et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol. 2007;176(2):141–6. Epub 2007/01/11. doi: 10.1083/jcb.200609158 17210950

24. He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, et al. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 2012;40(13):6109–21. Epub 2012/03/29. doi: 10.1093/nar/gks266 22453275

25. Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembongi H, et al. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion. 2007;7(5):311–21. Epub 2007/08/19. doi: 10.1016/j.mito.2007.06.004 17698423.

26. Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA. The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab. 2013;17(3):386–98. Epub 2013/03/12. doi: 10.1016/j.cmet.2013.02.006 23473033.

27. Lamb HK, Thompson P, Elliott C, Charles IG, Richards J, Lockyer M, et al. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Protein Sci. 2007;16(11):2391–402. Epub 2007/10/02. doi: 10.1110/ps.072900907 17905831

28. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN. Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J. 2010;430(3):551–8. Epub 2010/07/08. doi: 10.1042/BJ20100757 20604745

29. Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, et al. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell. 2005;18(3):319–29. Epub 2005/05/04. doi: 10.1016/j.molcel.2005.03.028 15866174.

30. Tu C, Zhou X, Tropea JE, Austin BP, Waugh DS, Court DL, et al. Structure of ERA in complex with the 3’ end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci U S A. 2009;106(35):14843–8. Epub 2009/08/27. doi: 10.1073/pnas.0904032106 19706445

31. Tang T, Zheng B, Chen SH, Murphy AN, Kudlicka K, Zhou H, et al. hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis. J Biol Chem. 2009;284(8):5414–24. Epub 2008/12/24. doi: 10.1074/jbc.M807797200 19103604

32. Reyes A, He J, Mao CC, Bailey LJ, Di Re M, Sembongi H, et al. Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res. 2011;39(12):5098–108. Epub 2011/03/15. doi: 10.1093/nar/gkr052 21398640

33. Martinez Lyons A, Ardissone A, Reyes A, Robinson AJ, Moroni I, Ghezzi D, et al. COA7 (C1orf163/RESA1) mutations associated with mitochondrial leukoencephalopathy and cytochrome c oxidase deficiency. J Med Genet. 2016;53(12):846–9. Epub 2016/09/30. doi: 10.1136/jmedgenet-2016-104194 27683825

34. Rorbach J, Gammage PA, Minczuk M. C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Res. 2016;44(2):992. Epub 2015/10/22. doi: 10.1093/nar/gkv1125 26487634

35. Chomyn A. In vivo labeling and analysis of human mitochondrial translation products. Methods Enzymol. 1996;264:197–211. Epub 1996/01/01. doi: 10.1016/s0076-6879(96)64020-8 8965693.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 7

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×