#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause


Autoři: Shuang Guo aff001;  Zhong Tian aff001;  Qing-Wen Wu aff001;  Kirst King-Jones aff002;  Wen Liu aff001;  Fen Zhu aff001;  Xiao-Ping Wang aff001
Působiště autorů: Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China aff001;  Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada aff002
Vyšlo v časopise: Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet 17(2): e1009352. doi:10.1371/journal.pgen.1009352
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009352

Souhrn

Diapause, a programmed developmental arrest primarily induced by seasonal environmental changes, is very common in the animal kingdom, and found in vertebrates and invertebrates alike. Diapause provides an adaptive advantage to animals, as it increases the odds of surviving adverse conditions. In insects, individuals perceive photoperiodic cues and modify endocrine signaling to direct reproductive diapause traits, such as ovary arrest and increased fat accumulation. However, it remains unclear as to which endocrine factors are involved in this process and how they regulate the onset of reproductive diapause. Here, we found that the long day-mediated drop in the concentration of the steroid hormone ecdysone is essential for the preparation of photoperiodic reproductive diapause in Colaphellus bowringi, an economically important cabbage beetle. The diapause-inducing long-day condition reduced the expression of ecdysone biosynthetic genes, explaining the drop in the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in female adults. Application of exogenous 20E induced vitellogenesis and ovarian development but reduced fat accumulation in the diapause-destined females. Knocking down the ecdysone receptor (EcR) in females destined for reproduction blocked reproductive development and induced diapause traits. RNA-seq and hormone measurements indicated that 20E stimulates the production of juvenile hormone (JH), a key endocrine factor in reproductive diapause. To verify this, we depleted three ecdysone biosynthetic enzymes via RNAi, which confirmed that 20E is critical for JH biosynthesis and reproductive diapause. Importantly, impairing Met function, a component of the JH intracellular receptor, partially blocked the 20E-regulated reproductive diapause preparation, indicating that 20E regulates reproductive diapause in both JH-dependent and -independent manners. Finally, we found that 20E deficiency decreased ecdysis-triggering hormone signaling and reduced JH production, thereby inducing diapause. Together, these results suggest that 20E signaling is a pivotal regulator that coordinates reproductive plasticity in response to environmental inputs.

Klíčová slova:

Developmental signaling – Diapause – Fats – Gene expression – Lipid signaling – Lipids – Ovaries – RNA interference


Zdroje

1. Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):R1193–211. doi: 10.1152/ajpregu.00250.2015 27053646

2. Denlinger DL. Regulation of diapause. Annu Rev Entomol. 2002;47:93–122. doi: 10.1146/annurev.ento.47.091201.145137 11729070

3. Hu C-K, Wang W, Brind’Amour J, Singh PP, Reeves GA, Lorincz MC, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367(6480):870–4. doi: 10.1126/science.aaw2601 32079766

4. Zhang XS, Wang T, Lin XW, Denlinger DL, Xu WH. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc Natl Acad Sci U S A. 2017;114(37):E7832–E40. doi: 10.1073/pnas.1711042114 28847950

5. Hahn DA, Denlinger DL. Energetics of insect diapause. Annu Rev Entomol. 2011;56:103–21. doi: 10.1146/annurev-ento-112408-085436 20690828

6. Hussein AM, Wang Y, Mathieu J, Margaretha L, Song C, Jones DC, et al. Metabolic control over mTOR-dependent diapause-like state. Dev Cell. 2020;52(2):236–50. doi: 10.1016/j.devcel.2019.12.018 31991105

7. Denlinger DL. Why study diapause? Entomol Res. 2008;38(1):1–9.

8. Kostal V. Eco-physiological phases of insect diapause. J Insect Physiol. 2006;52(2):113–27. doi: 10.1016/j.jinsphys.2005.09.008 16332347

9. Denlinger DL, Yocum GD, Rinehart JP. Hormonal control of diapause. In: Gilbert LI (Elsevier, Amsterdam), editor. Insect Endocrinology; 2012. pp. 430–463.

10. Liu W, Li Y, Zhu L, Zhu F, Lei C-L, Wang X-P. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. Insect Biochem Mol Biol 2016;74:50–60. doi: 10.1016/j.ibmb.2016.05.004 27180724

11. Bajgar A, Jindra M, Dolezel D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A. 2013;110(11):4416–21. doi: 10.1073/pnas.1217060110 23442387

12. Urbanova V, Bazalova O, Vaneckova H, Dolezel D. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 2016;70:184–90. doi: 10.1016/j.ibmb.2016.01.003 26826599

13. Tawfik AI, Tanaka Y, Tanaka S. Possible involvement of ecdysteroids in photoperiodically induced suppresion of ovarian development in a Japanese strain of the migratory locust, Locusta migratoria. J Insect Physiol 2002;48(4):411–8. doi: 10.1016/s0022-1910(02)00058-6 12770090

14. Zachardová D, Sehnal F, Landa V. Makisterone A content and gondadal development in Pyrrhocoris apterus reared under long versus short photoperiods. In: Tonner M, Soldán T, Bennettová B, editors. Regulation of Insect Reproduction IV. Czechoslovak Academy of Sciences Praha; 1989.pp. 59–71.

15. Kozlova T, Thummel CS. Steroid regulation of postembryonic development and reproduction in Drosophila. Trends Endocrinol Metab. 2000;11(7):276–80. doi: 10.1016/s1043-2760(00)00282-4 10920384

16. Lafont R, Dauphin-Villemant C, Warren JT, Rees H. Ecdysteroid chemistry and biochemistry. In: Gilbert LI, latrou K, Gill SS (Elsevier, Amsterdam), editors. Insect Endocrinology.; 2005. pp. 125–195.

17. Lagueux M, Hirn M, Hoffmann JA. Ecdysone during ovarian development in Locusta migratoria. J Insect Physiol. 1977;23(1):109–19. doi: 10.1016/0022-1910(77)90116-0 858928

18. Martin D, Wang SF, Raikhel AS. The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol. 2001;173(1–2):75–86. doi: 10.1016/s0303-7207(00)00413-5 11223179

19. Swevers L, Iatrou K. The ecdysone regulatory cascade and ovarian development in lepidopteran insects: insights from the silkmoth paradigm. Insect Biochem Mol Biol. 2003;33(12):1285–97. doi: 10.1016/j.ibmb.2003.06.012 14599500

20. Parthasarathy R, Sheng Z, Sun Z, Palli SR. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol. 2010;40(6):429–39. doi: 10.1016/j.ibmb.2010.04.002 20385235

21. Swevers L. An update on ecdysone signaling during insect oogenesis. Curr Opin Insect Sci. 2019;31:8–13. doi: 10.1016/j.cois.2018.07.003 31109678

22. Dubrovsky EB. Hormonal cross talk in insect development. Trends Endocrinol Metab. 2005;16(1):6–11. doi: 10.1016/j.tem.2004.11.003 15620543

23. Gu SH, Chow YS. Regulation of juvenile hormone biosynthesis by ecdysteroid levels during the early stages of the last two larval instars of Bombyx mori. J Insect Physiol 1996;42(7):625–32.

24. Areiza M, Nouzova M, Rivera-Perez C, Noriega FG. 20-Hydroxyecdysone stimulation of juvenile hormone biosynthesis by the mosquito corpora allata. Insect Biochem Mol Biol. 2015;64:100–5. doi: 10.1016/j.ibmb.2015.08.001 26255691

25. Meiselman M, Lee SS, Tran RT, Dai H, Ding Y, Rivera-Perez C, et al. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2017; 114(19):E3849–E3858. doi: 10.1073/pnas.1620760114 28439025

26. Xue F, Spieth HR, Li Aq, Ai H. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). J Insect Physiol. 2002;48(3):279–86. doi: 10.1016/s0022-1910(01)00172-x 12770101

27. Tan QQ, Feng L, Liu W, Zhu L, Lei CL, Wang XP. Differences in the pre-diapause and pre-oviposition accumulation of critical nutrients in adult females of the beetle Colaphellus bowringi. Entomol Exp Appl. 2016;160(2):117–25.

28. Niwa R, Niwa YS. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotech Bioch. 2014;78(8):1283–92. doi: 10.1080/09168451.2014.942250 25130728

29. Liu W, Tan QQ, Zhu L, Li Y, Zhu F, Lei CL, et al. Absence of juvenile hormone signalling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowringi. Insect Mol Biol. 2017;26(5):530–42. doi: 10.1111/imb.12316 28544235

30. Wang X, Hou Y, Saha TT, Pei G, Raikhel AS, Zou Z. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc Natl Acad Sci U S A. 2017;114(13):E2709–E2718 doi: 10.1073/pnas.1619326114 28292900

31. Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X, et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell. 2010;140(1):148–60. doi: 10.1016/j.cell.2009.12.027 20074523

32. Longo KA, Wright WS, Kang S, Gerin I, Chiang S-H, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004;279(34):35503–9. doi: 10.1074/jbc.M402937200 15190075

33. Tan QQ, Liu W, Zhu F, Lei CL, Wang XP. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci Rep. 2017;7:40509. doi: 10.1038/srep40509 28071706

34. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007;13(6):695–702. doi: 10.1038/nm1587 17529981

35. Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–25. doi: 10.1146/annurev-ento-112408-085356 19725772

36. Zhu L, Tian Z, Guo S, Liu W, Zhu F, Wang XP. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi. Insect Biochem Mol Biol. 2019;104:1–10. doi: 10.1016/j.ibmb.2018.11.001 30423421

37. Wang S, Liu S, Liu H, Wang J, Zhou S, Jiang RJ, et al. 20-hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J Mol Cell Biol. 2010;2(3):128–38. doi: 10.1093/jmcb/mjq006 20430856

38. Smykal V, Bajgar A, Provaznik J, Fexova S, Buricova M, Takaki K, et al. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 2014;45:69–76. doi: 10.1016/j.ibmb.2013.12.003 24361539

39. Kayukawa T, Minakuchi C, Namiki T, Togawa T, Yoshiyama M, Kamimura M, et al. Transcriptional regulation of juvenile hormone-mediated induction of Kruppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A. 2012;109(29):11729–34. doi: 10.1073/pnas.1204951109 22753472

40. Zhu L, Yin TY, Sun D, Liu W, Zhu F, Lei CL, et al. Juvenile hormone regulates the differential expression of putative juvenile hormone esterases via methoprene-tolerant in non-diapause-destined and diapause-destined adult female beetle. Gene. 2017;627:373–8. doi: 10.1016/j.gene.2017.06.061 28679117

41. Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology. Insect Biochem Mol Biol. 2014;51:1–9. doi: 10.1016/j.ibmb.2014.05.001 24833260

42. Noriega FG. Juvenile hormone biosynthesis in insects: What is new, what do we know, and what questions remain? Int Sch Res Notices. 2014;2014:967361. doi: 10.1155/2014/967361 27382622

43. Zitnan D, Zitnanova I, Spalovska I, Takac P, Park Y, Adams ME. Conservation of ecdysis-triggering hormone signalling in insects. J Exp Biol. 2003;206(Pt 8):1275–89. doi: 10.1242/jeb.00261 12624163

44. Di Cara F, King-Jones K. The circadian clock is a key driver of steroid hormone production in Drosophila. Curr Biol. 2016;26(18):2469–77. doi: 10.1016/j.cub.2016.07.004 27546572

45. Saunders DS. Dormancy, diapause, and the role of the circadian system in insect photoperiodism. Annu Rev Entomol. 2020;65:373–89. doi: 10.1146/annurev-ento-011019-025116 31594413

46. Poupardin R, Schottner K, Korbelova J, Provaznik J, Dolezel D, Pavlinic D, et al. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC genomics. 2015;16:720. doi: 10.1186/s12864-015-1907-4 26391666

47. Ameku T, Niwa R. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 2016;12(6):e1006123. doi: 10.1371/journal.pgen.1006123 27310920

48. Richard DS, Watkins NL, Serafin RB, Gilbert LI. Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. J Insect Physiol. 1998;44(7):637–44. doi: 10.1016/s0022-1910(98)00020-1 12769946

49. Wu Q, Jiang Z, Bai C. The role of ecdysteroids in the reproductive diapause of Dermacentor niveus Neumann. Insect Sci. 1994;1(2):164–71.

50. Kamoshida Y, Fujiyama-Nakamura S, Kimura S, Suzuki E, Lim J, Shiozaki-Sato Y, et al. Ecdysone receptor (EcR) suppresses lipid accumulation in the Drosophila fat body via transcription control. Biochem Biophys Res Commun. 2012;421(2):203–7. doi: 10.1016/j.bbrc.2012.03.135 22503687

51. Chen W, Xu WH. Wnt/beta-catenin signaling regulates Helicoverpa armigera pupal development by up-regulating c-Myc and AP-4. Insect Biochem Mol Biol. 2014;53:44–53. doi: 10.1016/j.ibmb.2014.07.004 25038464

52. Roy S, Saha TT, Johnson L, Zhao B, Ha J, White KP, et al. Regulation of gene expression patterns in mosquito reproduction. PLoS Genet. 2015;11(8):e1005450. doi: 10.1371/journal.pgen.1005450 26274815

53. Parthasarathy R, Sun Z, Bai H, Palli SR. Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol. 2010;40(5):405–14. doi: 10.1016/j.ibmb.2010.03.006 20381616

54. Whisenton LR, Bowen MF, Granger NA, Gilbert LI, Bollenbacher WE. Brain-mediated 20-hydroxyecdysone regulation of juvenile hormone synthesis by the corpora allata of the tobacco hornworm, Manduca sexta. Gen Comp Endocrinol. 1985;58(2):311–8. doi: 10.1016/0016-6480(85)90347-8 3996893

55. Liu S, Li K, Gao Y, Liu X, Chen W, Ge W, et al. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci U S A. 2018;115(1):139–44. doi: 10.1073/pnas.1716897115 29255055

56. Hult EF, Huang J, Marchal E, Lam J, Tobe SS. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. J Insect Physiol. 2015;80:48–60. doi: 10.1016/j.jinsphys.2015.04.006 25917982

57. Roma GC, Bueno OC, Camargo-Mathias MI. Morpho-physiological analysis of the insect fat body: a review. Micron. 2010;41(5):395–401. doi: 10.1016/j.micron.2009.12.007 20206534

58. Kang DS, Denlinger DL, Sim C. Suppression of allatotropin simulates reproductive diapause in the mosquito Culex pipiens. J Insect Physiol. 2014;64:48–53. doi: 10.1016/j.jinsphys.2014.03.005 24657669

59. Sim C, Denlinger DL. Juvenile hormone III suppresses forkhead of transcription factor in the fat body and reduces fat accumulation in the diapausing mosquito, Culex pipiens. Insect Mol Biol. 2013;22(1):1–11. doi: 10.1111/j.1365-2583.2012.01166.x 23121109

60. Matsunaga Y, Honda Y, Honda S, Iwasaki T, Qadota H, Benian GM, et al. Diapause is associated with a change in the polarity of secretion of insulin-like peptides. Nat Commun. 2016;7:10573 doi: 10.1038/ncomms10573 26838180

61. Williams KD, Busto M, Suster ML, So AK, Ben-Shahar Y, Leevers SJ, et al. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci U S A. 2006;103(43):15911–5. doi: 10.1073/pnas.0604592103 17043223

62. Sim C, Denlinger DL. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc Natl Acad Sci U S A. 2008;105(18):6777–81. doi: 10.1073/pnas.0802067105 18448677

63. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, et al. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell. 2004;7(2):179–92. doi: 10.1016/j.devcel.2004.07.005 15296715

64. Hossain MS, Liu Y, Zhou S, Li K, Tian L, Li S. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body. Insect Biochem Mol Biol. 2013;43(9):829–38. doi: 10.1016/j.ibmb.2013.06.007 23811219

65. Li T-R, White KP. Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev Cell. 2003;5(1):59–72. doi: 10.1016/s1534-5807(03)00192-8 12852852

66. Lu K, Zhou J, Chen X, Li W, Li Y, Cheng Y, et al. Deficiency of brummer impaires lipid mobilization and JH-mediated vitellogenesis in the brown planthopper, Nilaparvata lugens. Front Physiol. 2018;9:1535. doi: 10.3389/fphys.2018.01535 30425657

67. Tan QQ, Zhu L, Li Y, Liu W, Ma WH, Lei CL, et al. A de novo transcriptome and valid reference genes for quantitative real-time PCR in Colaphellus bowringi. PLoS ONE. 2015;10(2):e0118693. doi: 10.1371/journal.pone.0118693 25692689

68. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73 18546601

69. Meiselman MR, Kingan TG, Adams ME. Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biol. 2018;16(1):18. doi: 10.1186/s12915-018-0484-9 29382341

70. Lenaerts C, Cools D, Verdonck R, Verbakel L, Vanden Broeck J, Marchal E. The ecdysis triggering hormone system is essential for successful moulting of a major hemimetabolous pest insect, Schistocerca gregaria. Sci Rep. 2017;7:46502. doi: 10.1038/srep46502 28417966

71. Morita A, Soga K, Hoson T, Kamisaka S, Numata H. Changes in mechanical properties of the cuticle and lipid accumulation in relation to adult diapause in the bean bug, Riptortus clavatus. J Insect Physiol. 1999;45(3):241–7. doi: 10.1016/s0022-1910(98)00119-x 12770371

72. Cornette R, Gotoh H, Koshikawa S, Miura T. Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol. 2008;54(6):922–30. doi: 10.1016/j.jinsphys.2008.04.017 18541259

73. Zhao B, Hou Y, Wang J, Kokoza VA, Saha TT, Wang XL, et al. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes. Insect Biochem Mol Biol. 2016;77:69–77. doi: 10.1016/j.ibmb.2016.08.003 27530057

74. Robinson MD, Grigull J, Mohammad N, Hughes TR. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics. 2002;3:35. doi: 10.1186/1471-2105-3-35 12431279

75. Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007;23(4):401–7. doi: 10.1093/bioinformatics/btl633 17182697

76. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. doi: 10.1038/nbt.1621 20436464


Článek vyšel v časopise

PLOS Genetics


2021 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#