#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A rare coding mutation in the MAST2 gene causes venous thrombosis in a French family with unexplained thrombophilia: The Breizh MAST2 Arg89Gln variant


Autoři: Pierre-Emmanuel Morange aff001;  Franck Peiretti aff001;  Lenaick Gourhant aff003;  Carole Proust aff005;  Omar Soukarieh aff006;  Anne-Sophie Pulcrano-Nicolas aff005;  Ganapathi-Varma Saripella aff005;  Luca Stefanucci aff007;  Romaric Lacroix aff001;  Manal Ibrahim-Kosta aff001;  Catherine A. Lemarié aff003;  Mattia Frontini aff007;  Marie-Christine Alessi aff001;  David-Alexandre Trégouët aff005;  Francis Couturaud aff003
Působiště autorů: Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France aff001;  Hematology laboratory, CHU Timone, Marseille, France aff002;  EA3878-GETBO, Univ Brest, Department of internal medicine and chest diseases, FCRIN_INNOVTE, CHU Brest, Brest, France aff003;  INSERM U1078, Brest, France aff004;  Sorbonne Université, UPMC, INSERM UMR_S 1166, Paris, France aff005;  INSERM UMR 1219, Bordeaux Population Health Research Center, University of Bordeaux, France aff006;  National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom aff007;  NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom aff008;  British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, United Kingdom aff009
Vyšlo v časopise: A rare coding mutation in the MAST2 gene causes venous thrombosis in a French family with unexplained thrombophilia: The Breizh MAST2 Arg89Gln variant. PLoS Genet 17(1): e1009284. doi:10.1371/journal.pgen.1009284
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009284

Souhrn

Rare variants outside the classical coagulation cascade might cause inherited thrombosis. We aimed to identify the variant(s) causing venous thromboembolism (VTE) in a family with multiple relatives affected with unprovoked VTE and no thrombophilia defects. We identified by whole exome sequencing an extremely rare Arg to Gln variant (Arg89Gln) in the Microtubule Associated Serine/Threonine Kinase 2 (MAST2) gene that segregates with VTE in the family. Free-tissue factor pathway inhibitor (f-TFPI) plasma levels were significantly decreased in affected family members compared to healthy relatives. Conversely, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in affected members than in healthy relatives. RNA sequencing analysis of RNA interference experimental data conducted in endothelial cells revealed that, of the 13,387 detected expressed genes, 2,354 have their level of expression modified by MAST2 knockdown, including SERPINE1 coding for PAI-1 and TFPI. In HEK293 cells overexpressing the MAST2 Gln89 variant, TFPI and SERPINE1 promoter activities were respectively lower and higher than in cells overexpressing the MAST2 wild type. This study identifies a novel thrombophilia-causing Arg89Gln variant in the MAST2 gene that is here proposed as a new molecular player in the etiology of VTE by interfering with hemostatic balance of endothelial cells.

Klíčová slova:

Blood plasma – Endothelial cells – Gene expression – Gene regulation – RNA sequencing – Small interfering RNA – Transfection – Venous thromboembolism


Zdroje

1. Zöller B, Li X, Sundquist J, Sundquist K. Age- and gender-specific familial risks for venous thromboembolism: a nationwide epidemiological study based on hospitalizations in Sweden. Circulation. 2011 Aug 30;124(9):1012–20. doi: 10.1161/CIRCULATIONAHA.110.965020 21824919

2. Heit JA, Phelps MA, Ward SA, Slusser JP, Petterson TM, De Andrade M. Familial segregation of venous thromboembolism. J Thromb Haemost JTH. 2004 May;2(5):731–6. doi: 10.1111/j.1538-7933.2004.00660.x 15099278

3. Lindström S, Wang L, Smith EN, Gordon W, van Hylckama Vlieg A, de Andrade M, et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood. 2019 Nov 7;134(19):1645–57. doi: 10.1182/blood.2019000435 31420334

4. Tang L, Wang H-F, Lu X, Jian X-R, Jin B, Zheng H, et al. Common genetic risk factors for venous thrombosis in the Chinese population. Am J Hum Genet. 2013 Feb 7;92(2):177–87. doi: 10.1016/j.ajhg.2012.12.013 23332921

5. Suchon P, Germain M, Delluc A, Smadja D, Jouven X, Gyorgy B, et al. Protein S Heerlen mutation heterozygosity is associated with venous thrombosis risk. Sci Rep [Internet]. 2017 Apr 4 [cited 2019 Feb 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379621/ doi: 10.1038/srep45507 28374852

6. Deguchi H, Sinha RK, Marchese P, Ruggeri ZM, Zilberman-Rudenko J, McCarty OJT, et al. Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood. 2016 06;128(14):1870–8. doi: 10.1182/blood-2016-03-707679 27421960

7. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans [Internet]. Genomics; 2019 Jan [cited 2020 Apr 20]. Available from: http://biorxiv.org/lookup/doi/10.1101/531210

8. Tubeuf H, Charbonnier C, Soukarieh O, Blavier A, Lefebvre A, Dauchel H, et al. Large-scale comparative evaluation of user-friendly tools for predicting variant-induced alterations of splicing regulatory elements. Hum Mutat. 2020 Aug 2; doi: 10.1002/humu.24091 32741062

9. Reichel CA, Kanse SM, Krombach F. At the interface of fibrinolysis and inflammation: the role of urokinase-type plasminogen activator in the leukocyte extravasation cascade. Trends Cardiovasc Med. 2012 Oct;22(7):192–6. doi: 10.1016/j.tcm.2012.07.019 23062972

10. Valiente M, Andrés-Pons A, Gomar B, Torres J, Gil A, Tapparel C, et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem. 2005 Aug 12;280(32):28936–43. doi: 10.1074/jbc.M504761200 15951562

11. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015 May;17(5):405–24. doi: 10.1038/gim.2015.30 25741868

12. Garland P, Quraishe S, French P, O’Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res. 2008 Feb 21;1195:12–9. doi: 10.1016/j.brainres.2007.12.027 18206861

13. Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, Chamberlain JS. Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci. 1999 Jul;2(7):611–7. doi: 10.1038/10165 10404183

14. Clay MR, Varma S, West RB. MAST2 and NOTCH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum Pathol. 2013 Dec;44(12):2837–44. doi: 10.1016/j.humpath.2013.08.001 24140425

15. Lovelace MD, Powter EE, Coleman PR, Zhao Y, Parker A, Chang GH, et al. The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Mol Biol Cell. 2017 Apr 15;28(8):1066–78. doi: 10.1091/mbc.E16-05-0285 28251925

16. Dahm A, Van Hylckama Vlieg A, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood. 2003 Jun 1;101(11):4387–92. doi: 10.1182/blood-2002-10-3188 12560220

17. Urano T, Suzuki Y. Assessing plasminogen activation potential with global fibrinolytic assays. Res Pract Thromb Haemost. 2020 Jan;4(1):13–5. doi: 10.1002/rth2.12293 31989079

18. Lemberg MK, Freeman M. Cutting proteins within lipid bilayers: rhomboid structure and mechanism. Mol Cell. 2007 Dec 28;28(6):930–40. doi: 10.1016/j.molcel.2007.12.003 18158892

19. Terrien E, Chaffotte A, Lafage M, Khan Z, Préhaud C, Cordier F, et al. Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Sci Signal. 2012 Aug 14;5(237):ra58. doi: 10.1126/scisignal.2002941 22894835

20. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000 Jul;20(14):5010–8. doi: 10.1128/mcb.20.14.5010-5018.2000 10866658

21. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG. Direct identification of PTEN phosphorylation sites. FEBS Lett. 2002 Sep 25;528(1–3):145–53. doi: 10.1016/s0014-5793(02)03274-x 12297295

22. Shabanzadeh AP, D’Onofrio PM, Magharious M, Choi KAB, Monnier PP, Koeberle PD. Modifying PTEN recruitment promotes neuron survival, regeneration, and functional recovery after CNS injury. Cell Death Dis [Internet]. 2019 Aug [cited 2020 Sep 15];10(8). Available from: http://www.nature.com/articles/s41419-019-1802-z

23. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ, et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4233–8. doi: 10.1073/pnas.97.8.4233 10760291

24. Kuo H-M, Lin C-Y, Lam H-C, Lin P-R, Chan H-H, Tseng J-C, et al. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling. Atherosclerosis. 2012 Apr;221(2):341–9. doi: 10.1016/j.atherosclerosis.2010.08.067 22341591

25. Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res. 2005 Feb 15;65(4):1406–13. doi: 10.1158/0008-5472.CAN-04-3376 15735028

26. Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009 Oct 22;361(17):1671–5. doi: 10.1056/NEJMoa0904377 19846852

27. Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008 Mar 6;358(10):1037–52. doi: 10.1056/NEJMra072753 18322285

28. Kearon C, Julian JA, Newman TE, Ginsberg JS. Noninvasive diagnosis of deep venous thrombosis. McMaster Diagnostic Imaging Practice Guidelines Initiative. Ann Intern Med. 1998 Apr 15;128(8):663–77. doi: 10.7326/0003-4819-128-8-199804150-00011 9537941

29. Ilich A, Key NS. Global assays of fibrinolysis. Int J Lab Hematol. 2017;39(6):e142–3. doi: 10.1111/ijlh.12750 29058381

30. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl. 2009 Jul 15;25(14):1754–60. doi: 10.1093/bioinformatics/btp324 19451168

31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 19505943

32. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010 Sep;38(16):e164. doi: 10.1093/nar/gkq603 20601685

33. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014 Mar;46(3):310–5. doi: 10.1038/ng.2892 24487276

34. Couturaud F, Leroyer C, Tromeur C, Julian JA, Kahn SR, Ginsberg JS, et al. Factors that predict thrombosis in relatives of patients with venous thromboembolism. Blood. 2014 Sep 25;124(13):2124–30. doi: 10.1182/blood-2014-03-559757 25049279

35. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma Oxf Engl. 2013 Jan 1;29(1):15–21. doi: 10.1093/bioinformatics/bts635 23104886

36. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106 20979621

37. Skretting G, Stavik B, Landvik NE, Myklebust CF, Iversen N, Zienolddiny S, et al. Functional characterization of polymorphisms in the human TFPI gene. Biochem Biophys Res Commun. 2010 Jun 18;397(1):106–11. doi: 10.1016/j.bbrc.2010.05.078 20519147

38. Strandberg L, Lawrence D, Ny T. The organization of the human-plasminogen-activator-inhibitor-1 gene. Implications on the evolution of the serine-protease inhibitor family. Eur J Biochem. 1988 Oct 1;176(3):609–16. doi: 10.1111/j.1432-1033.1988.tb14320.x 3262512

39. Xiong W-C, Simon S. ECV304 Cells: An Endothelial or Epithelial Model? J Biol Chem. 2011 Oct 14;286(41):le21–le21.

40. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007 25605792

41. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211 19131956


Článek vyšel v časopise

PLOS Genetics


2021 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#