#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Independent domains for recruitment of PRC1 and PRC2 by human XIST


Autoři: Thomas Dixon-McDougall aff001;  Carolyn J. Brown aff001
Působiště autorů: Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada aff001
Vyšlo v časopise: Independent domains for recruitment of PRC1 and PRC2 by human XIST. PLoS Genet 17(3): e1009123. doi:10.1371/journal.pgen.1009123
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009123

Souhrn

XIST establishes inactivation across its chromosome of origin, even when expressed from autosomal transgenes. To identify the regions of human XIST essential for recruiting heterochromatic marks we generated a series of overlapping deletions in an autosomal inducible XIST transgene present in 8p of the HT1080 male fibrosarcoma cell line. We examined the ability of each construct to enrich its unified XIST territory with the histone marks established by PRC1 and PRC2 as well as the heterochromatin factors MacroH2A and SMCHD1. Chromatin enrichment of ubH2A by PRC1 required four distinct regions of XIST, and these were completely distinct from the two domains crucial for enrichment of H3K27me3 by PRC2. Both the domains required, as well as the impact of PRC1 and PRC2 inhibitors, suggest that PRC1 is required for SMCHD1 while PRC2 function is necessary for MacroH2A recruitment, although incomplete overlap of regions implicates roles for additional factors. This cooperativity between factors contributes to the requirement for multiple separate domains being required for each feature examined. The independence of the PRC1/PRC2 pathways was observed when XIST was expressed both autosomally or from the X chromosome suggesting that these observations are not purely a result of the context in which XIST operates. Although independent domains were required for the PRC1 and PRC2 pathways overall all regions tested were important for some aspect of XIST functionality, demonstrating both modularity and cooperativity across the XIST lncRNA.

Klíčová slova:

Guide RNA – Heterochromatin – HT1080 cells – Chromatin – Long non-coding RNA – Mouse models – Transfection – X chromosome inactivation


Zdroje

1. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991 Jan 3;349(6304):38–44. doi: 10.1038/349038a0 1985261

2. Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet. 2019 Sep;15(9):e1008333. doi: 10.1371/journal.pgen.1008333 31537017

3. Yen ZC, Meyer IM, Karalic S, Brown CJ. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics. 2007 Oct;90(4):453–63. doi: 10.1016/j.ygeno.2007.07.002 17728098

4. Minks J, Baldry SE, Yang C, Cotton AM, Brown CJ. XIST-induced silencing of flanking genes is achieved by additive action of repeat a monomers in human somatic cells. Epigenetics Chromatin. 2013 Aug 1;6(1):23. doi: 10.1186/1756-8935-6-23 23915978

5. Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, Shevchenko AI, Johnston C, Pavlova ME, et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 2001 May;11(5):833–49. doi: 10.1101/gr.174901 11337478

6. Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M, Cerase A, et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science. 2017 Jun 9;356(6342):1081–4. doi: 10.1126/science.aal2512 28596365

7. Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992 Oct 30;71(3):527–42. doi: 10.1016/0092-8674(92)90520-m 1423611

8. Chiang J-C, Jiang J, Newburger PE, Lawrence JB. Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nat Commun. 2018 Dec 5;9(1):5180. doi: 10.1038/s41467-018-07630-y 30518921

9. Jiang J, Jing Y, Cost GJ, Chiang J-C, Kolpa HJ, Cotton AM, et al. Translating dosage compensation to trisomy 21. Nature. 2013 Aug 15;500(7462):296–300. doi: 10.1038/nature12394 23863942

10. Brockdorff N, Bowness JS, Wei G. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 2020 Jun 1;34(11–12):733–44. doi: 10.1101/gad.337196.120 32482714

11. Patel S, Bonora G, Sahakyan A, Kim R, Chronis C, Langerman J, et al. Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. Cell Rep. 2017 Jan 3;18(1):54–67. doi: 10.1016/j.celrep.2016.11.054 27989715

12. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Vol. 165, Cell. 2016. p. 1012–26. doi: 10.1016/j.cell.2016.03.023 27062923

13. Migeon BR, Chowdhury AK, Dunston JA, McIntosh I. Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am J Hum Genet. 2001 Nov;69(5):951–60. doi: 10.1086/324022 11555794

14. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science. 2004 Jan 30;303(5658):644–9. doi: 10.1126/science.1092727 14671313

15. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, et al. Reactivation of the paternal X chromosome in early mouse embryos. Science. 2004 Jan 30;303(5658):666–9. doi: 10.1126/science.1092674 14752160

16. Chow JC, Hall LL, Baldry SEL, Thorogood NP, Lawrence JB, Brown CJ. Inducible XIST-dependent X-chromosome inactivation in human somatic cells is reversible. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10104–9. doi: 10.1073/pnas.0610946104 17537922

17. Kelsey AD, Yang C, Leung D, Minks J, Dixon-McDougall T, Baldry SEL, et al. Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol. 2015 Oct 2;16:208. doi: 10.1186/s13059-015-0774-2 26429547

18. Lee HJ, Gopalappa R, Sunwoo H, Choi S-W, Ramakrishna S, Lee JT, et al. En bloc and segmental deletions of humanXISTreveal X chromosome inactivation-involving RNA elements. Nucl Acids Research. 2019. 47(8) 3875–3887. doi: 10.1093/nar/gkz109 30783652

19. Monfort A, Wutz A. The B-side of Xist [Internet]. Vol. 9, F1000Research. 2020. p. 55. doi: 10.12688/f1000research.21362.1 32047616

20. Jansz N, Nesterova T, Keniry A, Iminitoff M, Hickey PF, Pintacuda G, et al. Smchd1 Targeting to the Inactive X Is Dependent on the Xist-HnrnpK-PRC1 Pathway. Cell Rep. 2018 Nov 13;25(7):1912–23.e9. doi: 10.1016/j.celrep.2018.10.044 30428357

21. Wang C-Y, Colognori D, Sunwoo H, Wang D, Lee JT. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat Commun. 2019 Jul 3;10(1):2950. doi: 10.1038/s41467-019-10755-3 31270318

22. Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature. 1998 Jun 11;393(6685):599–601. doi: 10.1038/31275 9634239

23. Brockdorff N. Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci. 2017 Nov 5;372(1733).

24. Colognori D, Sunwoo H, Wang D, Wang CY, Lee JT. Xist Repeats A and B Account for Two Distinct Phases of X Inactivation Establishment. Dev Cell 2020 Jul 6;54(1) 21–32.e5. doi: 10.1016/j.devcel.2020.05.021 32531209

25. Almeida M, Bowness JS, Brockdorff N. The many faces of Polycomb regulation by RNA. Curr Opin Genet Dev. 2020 May 10;61:53–61. doi: 10.1016/j.gde.2020.02.023 32403014

26. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, et al. Systematic discovery of Xist RNA binding proteins. Cell. 2015 Apr 9;161(2):404–16. doi: 10.1016/j.cell.2015.03.025 25843628

27. Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, et al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Mol Cell. 2017 Dec 7;68(5):955–69.e10. doi: 10.1016/j.molcel.2017.11.013 29220657

28. Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016 Nov 28;7:13661. doi: 10.1038/ncomms13661 27892467

29. McHugh CA, Chen C-K, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015 May 14;521(7551):232–6. doi: 10.1038/nature14443 25915022

30. Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, et al. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Rep. 2015 Jul 28;12(4):554–61. doi: 10.1016/j.celrep.2015.06.067 26190100

31. Żylicz JJ, Bousard A, Žumer K, Dossin F, Mohammad E, da Rocha ST, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019 Jan 10;176(1–2):182–97.e23. doi: 10.1016/j.cell.2018.11.041 30595450

32. Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Seminars in Cell & Developmental Biology. 2016 Aug; 56:19–34.

33. Alchanati I, Teicher C, Cohen G, Shemesh V, Barr HM, Nakache P, et al. The E3 Ubiquitin-Ligase Bmi1/Ring1A Controls the Proteasomal Degradation of Top2α Cleavage Complex–A Potentially New Drug Target. Vol. 4, PLoS ONE. 2009. p. e8104. doi: 10.1371/journal.pone.0008104 19956605

34. Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP, Newlander KA, et al. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2. ACS Med Chem Lett. 2012 Dec 13;3(12):1091–6. doi: 10.1021/ml3003346 24900432

35. Lu Z, Guo JK, Wei Y, Dou DR, Zarnegar B, Ma Q, et al. Structural modularity of the XIST ribonucleoprotein complex. Nature Commun. 2020. 11(1), 1–14 doi: 10.1038/s41467-020-20040-3 33268787

36. Tattermusch A, Brockdorff N. A scaffold for X chromosome inactivation. Hum Genet. 2011 Aug;130(2). doi: 10.1007/s00439-011-1027-4 21660507

37. Weidmann CA, Mustoe AM, Jariwala PB, Calabrese JM, Weeks KM. Analysis of RNA-protein networks with RNP-MaP defines functional hubs on RNA. Nat Biotechnol. 2020. In Press. doi: 10.1038/s41587-020-0709-7 33077962

38. Pandya-Jones A, Markaki Y, Serizay J, Chitiashvilli T, Mancia W, Damianov A, et al. A protein assembly mediates Xist localization and gene silencing. Nature, 132, jcs235093. http://doi.org/10.1038/s41586-020-2703-0

39. Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol. 2020 Jun;64:139–47. doi: 10.1016/j.ceb.2020.04.009 32535328

40. Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B, Colognori D, et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation [Internet]. Vol. 349, Science. 2015. p. aab2276–aab2276. doi: 10.1126/science.aab2276 26089354

41. Lu Z, Carter AC, Chang HY. Mechanistic insights in X-chromosome inactivation. Philos Trans R Soc Lond B Biol Sci. 2017 Nov 5;372(1733). doi: 10.1098/rstb.2016.0356 28947655

42. da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, et al. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol Cell. 2014 Jan 23;53(2):301–16. doi: 10.1016/j.molcel.2014.01.002 24462204

43. G Hendrickson D, Kelley DR, Tenen D, Bernstein B, Rinn JL. Widespread RNA binding by chromatin-associated proteins. Genome Biol. 2016 Feb 16;17:28. doi: 10.1186/s13059-016-0878-3 26883116

44. Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet. 1999 Aug;22(4):323–4. doi: 10.1038/11887 10431231

45. Sun Z, Bernstein E. Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem. 2019 Apr 23;63(1):59–74. doi: 10.1042/EBC20180062 31015383

46. Sun Z, Filipescu D, Andrade J, Gaspar-Maia A, Ueberheide B, Bernstein E. Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nat Struct Mol Biol. 2018 Oct;25(10):958–70. doi: 10.1038/s41594-018-0134-5 30291361

47. Gilbert SL, Pehrson JR, Sharp PA. XIST RNA associates with specific regions of the inactive X chromatin. J Biol Chem. 2000 Nov 24;275(47):36491–4. doi: 10.1074/jbc.C000409200 11006266

48. Patrat C, Ouimette J-F, Rougeulle C. X chromosome inactivation in human development. Development. 2020 Jan 3;147(1). doi: 10.1242/dev.183095 31900287

49. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, et al. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell. 2009 Apr;16(4):507–16. doi: 10.1016/j.devcel.2009.03.006 19386260

50. Lv Q, Yuan L, Song Y, Sui T, Li Z, Lai L. D-repeat in the XIST gene is required for X chromosome inactivation. RNA Biol. 2016;13(2):172–6. doi: 10.1080/15476286.2015.1137420 26786668

51. Chapman AG, Cotton AM, Kelsey AD, Brown CJ. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding. BMC Genet. 2014 Sep 9;15:89. doi: 10.1186/s12863-014-0089-4 25200388

52. Royce-Tolland ME, Andersen AA, Koyfman HR, Talbot DJ, Wutz A, Tonks ID, et al. The A-repeat links ASF/SF2-dependent Xist RNA processing with random choice during X inactivation. Nat Struct Mol Biol. 2010 Aug;17(8):948–54. doi: 10.1038/nsmb.1877 20657585

53. Hoki Y, Kimura N, Kanbayashi M, Amakawa Y, Ohhata T, Sasaki H, et al. A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development. 2009 Jan 1;136(1):139–46. doi: 10.1242/dev.026427 19036803

54. Wang Y, Zhong Y, Zhou Y, Tanaseichuk O, Li Z, Zhao JC. Identification of a Xist silencing domain by Tiling CRISPR. Sci Rep. 2019; 20;9(1):article number 2408. doi: 10.1038/s41598-018-36750-0 30787302

55. Rodermund L, Coker H, Oldenkamp R, Wei G, Bowness J, Rajkumar B, et al. Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. bioRxiv. 2020;

56. Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, et al. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun [Internet]. 2019 Dec 1 [cited 2019 Sep 7];10(2019):1–15. doi: 10.1038/s41467-019-11171-3 31311937

57. Colognori D, Sunwoo H, Kriz AJ, Wang CY, Lee JT. Xist Deletional Analysis Reveals an Interdependency between Xist RNA and Polycomb Complexes for Spreading along the Inactive X. Mol Cell. 2019 Apr 4;74(1):101–117.e10 doi: 10.1016/j.molcel.2019.01.015 30827740

58. Trotman JB, Lee DM, Cherney RE, Kim SO, Inoue K, Schertzer MD, et al. Elements at the 5′ end of Xist harbor SPEN-independent transcriptional antiterminator activity. Nucleic Acids Res [Internet]. 2020 Oct 9 [cited 2021 Feb 20];48(18):10500–17. doi: 10.1093/nar/gkaa789 32986830

59. Smola MJ, Christy TW, Inoue K, Nicholson CO, Friedersdorf M, Keene JD, et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10322–7. doi: 10.1073/pnas.1600008113 27578869

60. Gdula MR, Nesterova TB, Pintacuda G, Godwin J, Zhan Y, Ozadam H, et al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun. 2019 Jan 3;10(1):30. doi: 10.1038/s41467-018-07907-2 30604745

61. Wang C-Y, Jégu T, Chu H-P, Oh HJ, Lee JT. SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X. Cell. 2018 Jul 12;174(2):406–21.e25. doi: 10.1016/j.cell.2018.05.007 29887375

62. Yue M, Ogawa Y. CRISPR/Cas9-mediated modulation of splicing efficiency reveals short splicing isoform of Xist RNA is sufficient to induce X-chromosome inactivation. Nucleic Acids Res. 2018 Mar 16;46(5):e26. doi: 10.1093/nar/gkx1227 29237010

63. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281–308. doi: 10.1038/nprot.2013.143 24157548


Článek vyšel v časopise

PLOS Genetics


2021 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#