Anti-apoptotický mechanizmus metforminu proti apoptóze indukované ionizujícím zářením v mononukleárních buňkách lidské periferní krve


Autoři: S. Kolivand 1;  E. Motevaseli 2,3;  M. Cheki 4;  A. Mahmoudzadeh 5;  A. Shirazi 6;  V. Fait 7
Působiště autorů: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences and Health Services Tehran, Iran 1;  Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences and Health Services Tehran, Iran 2;  Food Microbio logy Research Center, Tehran University of Medical Sciences and Health Services, Tehran, Iran 3;  Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 4;  Department of Biosciences and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran 5;  Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran 6;  Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic 7
Vyšlo v časopise: Klin Onkol 2017; 30(5): 372-379
Kategorie: Původní práce
doi: 10.14735/amko2017372

Souhrn

Východiska:
V předchozím článku jsme ukázali, že metformin (MET) může snížit apoptózu indukovanou ionizační radiací (ionizing radiation – IR) v mononukleárních buňkách lidské periferní krve. Anti-apoptotický mechanizmus MET vůči IR však zůstává nejasný. Tato studie se pokouší ověřit mechanizmus působení MET v omezování rentgenem indukovanou apoptózu v mononukleárních buňkách lidské periferní krve.

Materiál a metody:
Mononukleární buňky byly 2 hod ošetřovány MET a ozářovány 6 Gy rentgenovými paprsky. Úrovně genové exprese BAX, CASP3 a BCL2 byly stanoveny 24 hod po ozáření za použití kvantitativní polymerázové řetězové reakce (qualitative polymerase chain reaction – qPCR) v reálném čase. Kromě toho byly hladiny proteinů BAX, CASP3 a BCL2 analyzovány pomocí metody Western blott.

Výsledky:
Radiační expozice zvýšila expresi genů BAX a CASP3 a snížila expresi genu BCL2 u mononukleárních buněk. Naopak, zvýšení exprese genu BCL2 spolu se snížením exprese genu BAX a CASP3 bylo pozorováno u MET a ozářených mononukleárních buněk. Bylo zjištěno, že záření zvýšilo poměr BAX/BCL2, zatímco MET snížil tento poměr. Také léčba s MET bez ozáření nezměnila expresi genů BAX, CASP3 a BCL2. Na druhou stranu snížená hladina proteinu BCL2 a zvýšená hladina proteinů BAX a CASP3 v 2 Gy ozářených mononukleárních buňkách, zatímco ovlivnění pomocí MET výrazně zvrátila tuto tendenci.

Závěr:
Výsledek naznačuje, že MET může chránit mononukleární buňky před apoptózou indukovanou IR prostřednictvím indukce buněčné anti-apoptotické signalizace.

Klíčová slova:
ionizující záření – metformin – apoptóza – geny – proteiny – krevní buňky

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdrženo:
2. 8. 2017

Přijato:
7. 9. 2017


Zdroje

1. Cheki M, Mihandoost E, Shirazi A et al. Prophylactic role of some plants and phytochemicals against radio-genotoxicity in human lymphocytes. J Cancer Res Ther 2016; 12 (4): 1234–1242. doi: 10.4103/0973-1482.172131.

2. Cheki M, Shahbazi Gahrouei D, Moslehi M. Determination of organ absorbed doses in patients following bone scan with using of MIRD method. Iran South Med J 2013; 16 (5): 296–303.

3. Shahbazi-Gahrouei D, Cheki M, Moslehi M. Estimation of organ absorbed doses in patients from 99mTc-diphosphonate using the data of MIRDose software. J Med Signals Sens 2012; 2 (4): 231–234.

4. Viollet B, Guigas B, Sanz Garcia N et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122 (6): 253–270. doi: 10.1042/CS20110386.

5. Halicka HD, Zhao H, Li J et al. Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling. Aging (Albany NY) 2011; 3 (10): 1028–1038. doi: 10.18632/aging.100397.

6. Hou X, Song J, Li XN et al. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun 2010; 396 (2): 199–205. doi: 10.1016/j.bbrc.2010.04. 017.

7. Piwkowska A, Rogacka D, Jankowski M et al. Metformin induces suppression of NAD (P) H oxidase activity in podocytes. Biochem Biophys Res Commun 2010; 393 (2): 268–273. doi: 10.1016/j.bbrc.2010.01.119.

8. Brunmair B, Staniek K, Gras F et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic action? Diabetes 2004; 53 (4): 1052–1059.

9. Drose S, Hanley PJ, Brandt U. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 2009; 1790 (6): 558–565. doi: 10.1016/j.bbagen.2009.01.011.

10. Lee SY, Lee SH, Yang EJ et al. Metformin Ameliorates Inflammatory Bowel Disease by Suppression of the STAT3 Signaling Pathway and Regulation of the between Th17/Treg Balance. PLoS One 2015; 10 (9): 1358–1358. doi: 10.1371/journal.pone.0135858.

11. Liu Y, Yang F, Ma W et al. Metformin inhibits proliferation and proinflammatory cytokines of human keratinocytes in vitro via mTOR-signaling pathway. Pharm Biol 2016; 54 (7): 1173–1178. doi: 10.3109/13880209.2015.1057652.

12. Yeh CH, Chen TP, Wang YC et al. AMP-activated protein kinase activation during cardioplegia-induced hypoxia/reoxygenation injury attenuates cardiomyocytic apoptosis via reduction of endoplasmic reticulum stress. Mediators Inflamm 2010. doi: 10.1155/2010/130636.

13. Chang J, Jung HH, Yang JY et al. Protective role of antidiabetic drug metformin against gentamicin induced apoptosis in auditory cell line. Hear Res 2011; 282 (1–2): 92–96.

14. Koritzinsky M. Metformin: A novel biological modifier of tumor response to radiation therapy. Int J Radiat Oncol Biol Phys 2015; 93 (2): 454–464. doi: 10.1016/j.ijrobp.2015.06.003.

15. Cheki M, Shirazi A, Mahmoudzadeh A et al. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat Res 2016; 809: 24–32. doi: 10.1016/j.mrgentox.2016.09.001.

16. Yuan JS, Reed A, Chen F et al. Statistical analysis of real-time PCR data. BMC Bioinformatics 2006; 7: 81–85. doi: 10.1186/1471-2105-7-85.

17. Kulkarni S, Ghosh SP, Hauer-Jensen M et al. Hematological targets of radiation damage. Curr Drug Targets 2010; 11 (11): 1375–1385.

18. Razzaghdoust A, Mozdarani H, Mofid B et al. Reduction in radiation-induced lymphocytopenia by famotidine in patients undergoing radiotherapy for prostate cancer. Prostate 2014; 74 (1): 41–47. doi: 10.1002/pros.22725.

19. De Giorgi U, Mego M, Scarpi E et al. Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clin Breast Cancer 2012; 12 (4): 264–269. doi: 10.1016/j.clbc.2012.04.004.

20. Balmanoukian A, Ye X, Herman J et al. The association between treatment-related lymphopenia and survival in newly diagnosed patients with resected adenocarcinoma of the pancreas. Cancer Invest 2012; 30 (8): 571–576. doi: 10.3109/07357907.2012.700987.

21. Grossman SA, Ye X, Lesser G et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 2011; 17 (16): 5473–5480. doi: 10.1158/1078-0432.CCR-11-0774.

22. Lissoni P, Meregalli S, Bonetto E et al. Radiotherapy-induced lymphocytopenia: Changes in total lymphocyte count and in lymphocyte subpopulations under pelvic irradiation in gynecologic neoplasms. J Biol Regul Homeost Agents 2005; 19 (3–4): 153–158.

23. Xu P, Cai X, Zhang W et al. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2 (Ca (2+)) /Caspase-3/PARP-1 pathway. Apoptosis 2016; 21 (10): 1125–1143. doi: 10.1007/s10495-016-1270-1.

24. Shen Y, Luo Q, Xu H et al. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis. Biochem Pharmacol 2011; 82 (3): 260–268. doi: 10.1016/j.bcp.2011.04.013.

25. Xia L, Luo QL, Lin HD et al. The effect of different treatment time of millimeter wave on chondrocyte apoptosiss, caspase-3, caspase-8, and MMP-13 express-ion in rabbit surgically induced model of knee osteoarthritis. Rheumatol Int 2012; 32 (9): 2847–2856. doi: 10.1007/s00296-011-2080-y.

26. Mohan S, Abdelwahab SI, Kamalidehghan B et al. Involvement of NF-κB and BCL2/BAX signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine 2012; 19 (11): 1007–1015. doi: 10.1016/j.phymed.2012.05.012.

27. Kluck RM, Bossy-Wetzel E, Green DR et al. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275 (5303): 1132–1136.

28. Lindsten T, Zong WX, Thompson CB. Defining the role of the Bcl-2 family of proteins in the nervous system. Neuroscientist 2005; 11 (1): 10–15. doi: 10.1177/10738 58404269267.

29. Bivik CA, Larsson PK, Kagedal KM et al. UVA/B-Induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Invest Dermatol 2006; 126 (5): 1119–1127. doi: 10.1038/sj.jid.5700124.

30. Green DR. At the gates of death. Cancer Cell 2006; 9 (5): 328–330. doi: 10.1016/j.ccr.2006.05.004.

31. Ullah I, Ullah N, Naseer MI et al. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neuroscience 2012; 13: 11. doi: 10.1186/1471-2202-13-11.

32. Chen D, Xia D, Pan Z et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis 2016; 7 (10): e2441. doi: 10.1038/cddis.2016.334.

33. Zhou C, Sun R, Zhuang S et al. Metformin prevents cerebellar granule neurons against glutamate-induced neurotoxicity. Brain Res Bull 2016; 121: 241–245. doi: 10.1016/j.brainresbull.2016.02.009.

34. de la Rosa LC, Vrenken TE, Buist-Homan M et al. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharm Res Perspect 2015; 3 (2): e00125. doi: 10.1002/prp2.125.

35. Asensio-Lopez MC, Lax A, Pascual-Figal DA et al. Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radic Biol Med 2011; 51 (10): 1861–1871. doi: 10.1016/j.freeradbiomed.2011.08.015.

36. Ota K, Nakamura J, Li W et al. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 2007; 357 (1): 270–275. doi: 10.1016/j.bbrc.2007.03.140.

37. Guigas B, Detaille D, Chauvin C et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 2004; 382 (Pt 3): 877–884. doi: 10.1042/BJ20040885.

38. El-Mir MY, Detaille D, R-Villanueva G et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 2008; 34 (1): 77–87. doi: 10.1007/s12031-007-9002-1.

39. Morales AI, Detaille D, Prieto M et al. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 2010; 77 (10): 861–869. doi: 10.1038/ki.2010.11.

40. Park SJ, Ahn G, Lee NH et al. Phloroglucinol (PG) purified from Ecklonia cava attenuates radiation-induced apoptosis in blood lymphocytes and splenocytes. Food Chem Toxicol 2011; 49 (9): 2236–2242. doi: 10.1016/j.fct.2011.06.021.

41. Park E, Lee NH, Joo HG et al. Modulation of apoptosis of eckol against ionizing radiation in mice. Biochem Biophys Res Commun 2008; 372 (4): 792–797. doi: 10.1016/j.bbrc.2008.05.140.

42. Chen L, Liu Y, Dong L et al. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage. Cell Stress Chaperones 2015; 20 (2): 289–295. doi: 10.1007/s12192-014-0542-3.

43. Begum N, Prasad NR. Apigenin, a dietary antioxidant, modulates gamma radiation-induced oxidative damages in human peripheral blood lymphocytes. Biomed Prev Nut 2012; 2 (1): 16–24. doi: 10.1016/j.bionut.2011.11. 003.

44. Ghosh D, Dey SK, Saha C. Antagonistic effects of black tea against gamma radiation-induced oxidative damage to normal lymphocytes in comparison with cancerous K562 cells. Radiat Environ Biophys 2014; 53 (4): 695–704. doi: 10.1007/s00411-014-0551-8.

45. Wang XY, Ma ZC, Wang YG et al. Tetramethylpyrazine protects lymphocytes from radiation-induced apoptosis through nuclear factor-κB. Chin J Nat Med 2014; 12 (10): 730–737. doi: 10.1016/S1875-5364 (14) 60112-6.

46. Villunger A, Michalak EM, Coultas L et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302 (5647): 1036–1038. doi: 10.1126/science.1090072.

47. Bonnefont-Rousselot D, Raji B, Walrand S et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003; 52 (5): 586–589. doi: 10.1053/meta.2003.50093.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 5

2017 Číslo 5

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
nový kurz
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: as. MUDr. Petr Výborný, CSc., FEBO

Příběh jedlé sody
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se