#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Use of PET/CT Fusion in Radiotherapy Treatment Planning of Non-Small-Cell Lung Cancers


Authors: R. Vojtíšek;  K. Havránek;  J. Fínek
Authors place of work: Radioterapeutické a onkologické oddělení, FN Plzeň
Published in the journal: Klin Onkol 2011; 24(1): 23-34
Category: Přehledy

Summary

Backgrounds:
Lung cancer is currently the most frequently diagnosed malignant disease worldwide and radiotherapy has a fundamental and irreplaceable role in the therapeutic algorithm of this disease. Conventionally, radiotherapy is planned using CT alone. However, this could be a source of many inaccuracies and errors in the process of contouring the target volumes, the likelihood of which could be decreased by using the data from PET imaging and, ideally, from a fusion of PET and CT (as has already been proven in the diagnosis of lung cancer).

Case:
This review is devoted to all important aspects related to the use of PET/CT imaging in radiotherapy treatment planning of non-small-cell lung cancer and to the advantages resulting from its use.

Conclusion:
Investigation of PET/CT imaging is a useful tool leading to increased accuracy of contouring of the target volumes. The integration of both diagnostic modalities reduces the limitations of these modalities if used separately. The use of combined PET/CT imaging often leads to an identification of a change in tumor size (it also often uncovers distant metastases) resulting in a change of treatment intention. The change of the target volume size and thus the change of irradiated volume of critical structures could lead to an increase of the dose delivered to the tumor in situations when a reduction of these volumes was reached. Investigation of PET/CT imaging also has a positive impact on subjective approach to contouring by different radiation oncologists.

Key words:
lung cancer – radiotherapy – radiotherapy planning – target volumes – investigation of PET/CT imaging


Zdroje

1. Parkin DM, Bray F, Ferlay J et al. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2): 74–108.

2. Youlden DR, Cramb SM, Baade PD. The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J Thorac Oncol 2008; 3(8): 819–831.

3. Jemal A, Siegel R, Ward E et al. Cancer statistics, 2009. CA Cancer J Clin 2009; 59(4): 225–249.

4. ÚZIS ČR, NOR ČR. Novotvary 2006. Cancer Incidence 2006 in the Czech Republic. http://www.uzis.cz/publikace/novotvary-2006.

5. ICRU. Prescribing, Recording and Reporting Photon Beam Therapy (Report 50). Bethesda: International Commission for Radiation Units and Measurements 1993: 71.

6. ICRU Report 62. Prescribing, recording and reporting photon beam therapy (Suppl. to ICRU Report 50). Bethesda: International Commission for Radiation Units and Measurements 1999.

7. Giraud P, Antoine M, Larrouy A et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 2000; 48(4): 1015–1024.

8. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol 2004; 14(1): 52–64.

9. Macapinlac HA, Apisarnthanarax S, Thorstad WL et al. Positron emission tomography imaging for target determination and delineation. In: Chao KSC et al. Practical essentials of intensity modulated radiation therapy. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2005: 62–81.

10. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927; 8(6): 519–530.

11. Pauwels EK, Ribeiro MJ, Stoot JH et al. FDG accumulation and tumor biology. Nucl Med Biol 1998; 25(4): 317–322.

12. Smith TA. FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 1998; 19(2): 97–105.

13. Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008; 38(2): 137–140.

14. Beyer T, Townsend DW, Brun T et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41(8): 1369–1379.

15. Gámez C, Rosell R, Fernández A et al. PET/CT fusion scan in lung cancer: current recommendations and innovations. J Thorac Oncol 2006; 1(1): 74–77.

16. Lardinois D, Weder W, Hany TF et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003; 348(25): 2500–2507.

17. Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 2003; 123 (1 Suppl): 137S–146S.

18. Antoch G, Stattaus J, Nemat AT et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 2003; 229(2): 526–533. Epub 2003 Sep 25.

19. Faria SL, Menard S, Devic S et al. Impact of FDG-PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int J Radiat Oncol Biol Phys 2008; 70(4): 1035–1038.

20. Deniaud-Alexandre E, Touboul E, Lerouge D et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005; 63(5): 1432–1441.

21. MacManus MP, Hicks RJ, Matthews JP et al. Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer 2005; 49(1): 95–108.

22. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004; 45(9): 1431–1434.

23. Mah K, Caldwell CB. Biological target volume. In: Paulino A, Teh BS. PET/CT in radiotherapy treatment planning. Elsevier Press 2008: 52–89.

24. Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora‘s box? Int J Radiat Oncol Biol Phys 2004; 59(1): 4–5.

25. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol 2000; 27(7): 643–646.

26. Nestle U, Walter K, Schmidt S et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999; 44(3): 593–597.

27. Bradley J, Thorstad WL, Mutic S et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59(1): 78–86.

28. Giraud P, Grahek D, Montravers F et al. CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 2001; 49(5): 1249–1257.

29. Brianzoni E, Rossi G, Ancidei S et al. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume. Eur J Nucl Med Mol Imaging 2005; 32(12): 1392–1399.

30. Erdi YE, Rosenzweig K, Erdi AK et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002; 62(1): 51–60.

31. Fox JL, Rengan R, O‘Meara W et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005; 62(1): 70–75.

32. Mah K, Caldwell CB, Ung YC et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002; 52(2): 339–350.

33. Videtic GM, Rice TW, Murthy S et al. Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int J Radiat Oncol Biol Phys 2008; 72(3): 702–706.

34. Jarritt PH, Carson KJ, Hounsell AR et al. The role of PET/CT scanning in radiotherapy planning. Br J Radiol 2006; 79 (Spec No 1): S27–S35.

35. Hong R, Halama J, Bova D et al. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys 2007; 67(3): 720–726.

36. Nestle U, Kremp S, Schaefer-Schuler A et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005; 46(8): 1342–1348.

37. Biehl KJ, Kong FM, Dehdashti F et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non--small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006; 47(11): 1808–1812.

38. Ashamalla H, Rafla S, Parikh K et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005; 63(4): 1016–1023.

39. Davis JB, Reiner B, Huser M et al. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006; 80(1): 43–50.

40. Black QC, Grills IS, Kestin LLet al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004; 60(4): 1272–1282.

41. Yaremko B, Riauka T, Robinson D et al. Threshold modification for tumour imaging in non-small-cell lung cancer using positron emission tomography. Nucl Med Commun 2005; 26(5): 433–440.

42. Gondi V, Bradley K, Mehta M et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 67(1): 187–195.

43. Kiffer JD, Berlangieri SU, Scott AM et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998; 19(3): 167–177.

44. Ciernik IF, Dizendorf E, Baumert BG et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003; 57(3): 853–863.

45. Ceresoli GL, Cattaneo GM, Castellone P et al. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation. Tumori 2007; 93(1): 88–96.

46. Grills IS, Yan D, Black QC et al. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 67(3): 709–719.

47. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000; 55(3): 317–324.

48. Paulsen F, Scheiderbauer J, Eschmann SM et al. First experiences of radiation treatment planning with PET/CT. Strahlenther Onkol 2006; 182(7): 369–375.

49. Kwa SL, Lebesque JV, Theuws JC et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998; 42(1): 1–9.

50. Singh AK, Lockett MA, Bradley JD. Predictors of radiation-induced esophageal toxicity in patients with non-small-cell lung cancer treated with three-dimensional conformal ra­diotherapy. Int J Radiat Oncol Biol Phys 2003; 55(2): 337–341.

51. MacManus M, D‘Costa I, Everitt S et al. Comparison of CT and positron emission tomography/CT coregistered images in planning radical radiotherapy in patients with non-small-cell lung cancer. Australas Radiol 2007; 51(4): 386–393.

52. Rengan R, Rosenzweig KE, Venkatraman E et al. Improved local control with higher doses of radiation in large-volume stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 60(3): 741–747.

53. Willner J, Baier K, Caragiani E et al. Dose, volume, and tumor control prediction in primary radiotherapy of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2002; 52(2): 382–389.

54. Saunders M, Dische S, Barrett A et al. Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering committee. Radiother Oncol 1999; 52(2): 137–148.

55. van Der Wel A, Nijsten S, Hochstenbag M et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 2005; 61(3): 649–655.

56. De Ruysscher D, Wanders S, Minken A et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005; 77(1): 5–10. Epub 2005 Jul 12.

57. Gillham C, Zips D, Pönisch F et al. Additional PET/CT in week 5-6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother Oncol 2008; 88(3): 335–341.

58. Giraud P, Elles S, Helfre S et al. Conformal radiotherapy for lung cancer: Different delineation of the gross tumour volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 2002; 62(1): 27–36.

59. Ling CC, Humm J, Larson S et al. Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000; 47(3): 551–560.

60. Gagel B, Reinartz P, Demirel C et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 2006; 6: 51.

61. Kenny LM, Aboagye EO, Price PM. Positron emission tomography imaging of cell proliferation in oncology. R Coll Radiol 2004; 16(3): 176–185.

62. Radiation Therapy Oncology Group. RTOG 0618. A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Operable Stage I/II Non-Small Cell Lung Cancer. http://www.rtog.org/members/protocols/0618/0618.pdf.

63. Radiation Therapy Oncology Group. RTOG 0915. A Randomized Phase Ii Study Comparing 2 Stereotactic Body Radiation Therapy (Sbrt) Schedules For Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. http://www.rtog.org/members/protocols/0915/0915.pdf.

64. Pfannenberg AC, Aschoff P, Brechtel K et al. Low dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and therapy planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34(1): 36–44.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 1

2011 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#