Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C
Autoři:
Xin-Ni Lim aff001; Chao Shan aff003; Jan K. Marzinek aff005; Hongping Dong aff003; Thiam Seng Ng aff001; Justin S. G. Ooi aff001; Guntur Fibriansah aff001; Jiaqi Wang aff001; Chandra S. Verma aff005; Peter J. Bond aff005; Pei-Yong Shi aff003; Shee-mei Lok aff001
Působiště autorů:
Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
aff001; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
aff002; Novartis Institute for Tropical Diseases, Singapore, Singapore
aff003; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
aff004; Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
aff005; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
aff006; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
aff007; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Texas, United States of America
aff008
Vyšlo v časopise:
Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007996
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1007996
Souhrn
The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus.
Klíčová slova:
Biology and life sciences – Physiology – Antibodies – Biochemistry – Proteins – Immune system proteins – Protein interactions – Biochemical simulations – Computational biology – Organisms – Viruses – RNA viruses – Flaviviruses – Dengue virus – Microbiology – Medical microbiology – Microbial pathogens – Viral pathogens – Microbial mutation – Medicine and health sciences – Immune physiology – Immunology – Pathology and laboratory medicine – Pathogens – Physical sciences – Physics – Thermodynamics – Thermal stability – Mathematics – Statistics – principal component analysis – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis – Sequence alignment – Mathematical and statistical techniques – Statistical methods
Zdroje
1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. doi: 10.1038/nature12060 23563266
2. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model.pdf>.
3. Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990;174(2):479–93. doi: 10.1016/0042-6822(90)90102-w 2129562
4. Holmes E, Twiddy S. The origin, emergence and evolutionary genetics of dengue virus. Infection, Genetics and Evolution. 2003;3(1):19–28. 12797969
5. Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med. 1977;146(1):201–17. doi: 10.1084/jem.146.1.201 406347
6. Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHJM, Chotpitayasunondh T, Chua MN, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. The Lancet. 2014;384(9951):1358–65.
7. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. The New England journal of medicine. 2015;372(2):113–23. doi: 10.1056/NEJMoa1411037 25365753
8. Fibriansah G, Ng TS, Kostyuchenko VA, Lee J, Lee S, Wang J, et al. Structural changes in dengue virus when exposed to a temperature of 37 degrees C. Journal of virology. 2013;87(13):7585–92. doi: 10.1128/JVI.00757-13 23637405
9. Zhang X, Sheng J, Plevka P, Kuhn RJ, Diamond MS, Rossmann MG. Dengue structure differs at the temperatures of its human and mosquito hosts. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(17):6795–9. doi: 10.1073/pnas.1304300110 23569243
10. Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, et al. Conformational changes of the flavivirus E glycoprotein. Structure. 2004;12(9):1607–18. doi: 10.1016/j.str.2004.06.019 15341726
11. Fibriansah G, Tan JL, Smith SA, de Alwis R, Ng TS, Kostyuchenko VA, et al. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat Commun. 2015;6:6341. doi: 10.1038/ncomms7341 25698059
12. Fibriansah G, Ibarra KD, Ng TS, Smith SA, Tan JL, Lim XN, et al. DENGUE VIRUS. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science. 2015;349(6243):88–91. doi: 10.1126/science.aaa8651 26138979
13. Fibriansah G, Tan JL, Smith SA, de Alwis AR, Ng TS, Kostyuchenko VA, et al. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol Med. 2014;6(3):358–71. doi: 10.1002/emmm.201303404 24421336
14. Zhang S, Kostyuchenko VA, Ng TS, Lim XN, Ooi JS, Lambert S, et al. Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun. 2016;7:13679. doi: 10.1038/ncomms13679 27882950
15. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, et al. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol. 2013;20(1):105–10. doi: 10.1038/nsmb.2463 23241927
16. Crill WD, Chang GJ. Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. Journal of virology. 2004;78(24):13975–86. doi: 10.1128/JVI.78.24.13975-13986.2004 15564505
17. Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE. Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg. 1985;34(1):162–9. doi: 10.4269/ajtmh.1985.34.162 2578750
18. Costin JM, Zaitseva E, Kahle KM, Nicholson CO, Rowe DK, Graham AS, et al. Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop. Journal of virology. 2013;87(1):52–66. doi: 10.1128/JVI.02273-12 23077306
19. Lok SM, Kostyuchenko V, Nybakken GE, Holdaway HA, Battisti AJ, Sukupolvi-Petty S, et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol. 2008;15(3):312–7. doi: 10.1038/nsmb.1382 18264114
20. Rouvinski A, Guardado-Calvo P, Barba-Spaeth G, Duquerroy S, Vaney MC, Kikuti CM, et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature. 2015;520(7545):109–13. doi: 10.1038/nature14130 25581790
21. Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998;75(1):422–7. doi: 10.1016/s0006-3495(98)77529-0 9649402
22. Goo L, VanBlargan LA, Dowd KA, Diamond MS, Pierson TC. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 2017;13(2):e1006178. doi: 10.1371/journal.ppat.1006178 28207910
23. Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, et al. Structure of the thermally stable Zika virus. Nature. 2016;533(7603):425–8.
24. Xie X, Yang Y, Muruato AE, Zou J, Shan C, Nunes BT, et al. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis. mBio. 2017;8(1).
25. Chaichana P, Okabayashi T, Puiprom O, Sasayama M, Sasaki T, Yamashita A, et al. Low levels of antibody-dependent enhancement in vitro using viruses and plasma from dengue patients. PLoS One. 2014;9(3):e92173. doi: 10.1371/journal.pone.0092173 24642752
26. Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A, James SL, et al. Dengue viruses cluster antigenically but not as discrete serotypes. Science. 2015;349(6254):1338–43. doi: 10.1126/science.aac5017 26383952
27. Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010;8(3):271–83. doi: 10.1016/j.chom.2010.08.007 20833378
28. de Alwis R, Williams KL, Schmid MA, Lai CY, Patel B, Smith SA, et al. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 2014;10(10):e1004386. doi: 10.1371/journal.ppat.1004386 25275316
29. Teoh EP, Kukkaro P, Teo EW, Lim AP, Tan TT, Yip A, et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci Transl Med. 2012;4(139):139ra83. doi: 10.1126/scitranslmed.3003888 22723463
30. Kaufmann B, Vogt MR, Goudsmit J, Holdaway HA, Aksyuk AA, Chipman PR, et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(44):18950–5. doi: 10.1073/pnas.1011036107 20956322
31. Low JG, Ooi EE, Tolfvenstam T, Leo YS, Hibberd ML, Ng LC, et al. Early Dengue infection and outcome study (EDEN)—study design and preliminary findings. Ann Acad Med Singapore. 2006;35(11):783–9. 17160194
32. Wang QY, Dong H, Zou B, Karuna R, Wan KF, Zou J, et al. Discovery of Dengue Virus NS4B Inhibitors. Journal of virology. 2015;89(16):8233–44. doi: 10.1128/JVI.00855-15 26018165
33. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320–4. doi: 10.1093/nar/gku316 24753421
34. Tan JL, Lok SM. Dengue virus purification and sample preparation for cryo-electron microscopy. Methods in molecular biology. 2014;1138:41–52. doi: 10.1007/978-1-4939-0348-1_4 24696330
35. Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016;193(1):1–12. doi: 10.1016/j.jsb.2015.11.003 26592709
36. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. doi: 10.1016/j.jsb.2006.05.009 16859925
37. Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180(3):519–30. doi: 10.1016/j.jsb.2012.09.006 23000701
38. Christenbury JG, Aw PP, Ong SH, Schreiber MJ, Chow A, Gubler DJ, et al. A method for full genome sequencing of all four serotypes of the dengue virus. Journal of virological methods. 2010;169(1):202–6. doi: 10.1016/j.jviromet.2010.06.013 20600330
39. Johnson BW, Russell BJ, Lanciotti RS. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol. 2005;43(10):4977–83. doi: 10.1128/JCM.43.10.4977-4983.2005 16207951
40. Lee RC, Hapuarachchi HC, Chen KC, Hussain KM, Chen H, Low SL, et al. Mosquito cellular factors and functions in mediating the infectious entry of chikungunya virus. PLoS Negl Trop Dis. 2013;7(2):e2050. doi: 10.1371/journal.pntd.0002050 23409203
41. Sun S, Nakashima K, Ito M, Li Y, Chida T, Takahashi H, et al. Involvement of PUF60 in Transcriptional and Post-transcriptional Regulation of Hepatitis B Virus Pregenomic RNA Expression. Sci Rep. 2017;7(1):12874.
42. Tran DDH, Kessler C, Niehus SE, Mahnkopf M, Koch A, Tamura T. Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene. 2018;37(1):75–85. doi: 10.1038/onc.2017.312 28869604
43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609
44. Zhang S, Chan KR, Tan HC, Ooi EE. Dengue virus growth, purification, and fluorescent labeling. Methods in molecular biology. 2014;1138:3–14. doi: 10.1007/978-1-4939-0348-1_1 24696327
45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics. 1983;79(2):926–35.
46. Best RB, de Sancho D, Mittal J. Residue-specific alpha-helix propensities from molecular simulation. Biophys J. 2012;102(6):1462–7. doi: 10.1016/j.bpj.2012.02.024 22455930
47. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18. doi: 10.1002/jcc.20291 16211538
48. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. Journal of computational chemistry. 1997;18(12):1463–72.
49. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. The Journal of chemical physics. 1995;103(19):8577–93.
50. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of chemical physics. 2007;126(1):014101. doi: 10.1063/1.2408420 17212484
51. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics. 1981;52(12):7182–90.
52. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–8, 27–8. 8744570
53. Amadei A, Linssen A, Berendsen HJ. Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics. 1993;17(4):412–25.
54. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16(22):10881–90. doi: 10.1093/nar/16.22.10881 2849754
55. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 15264254
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Choroby jater v ordinaci praktického lékaře – význam jaterních testů
- Diagnostický algoritmus při podezření na syndrom periodické horečky
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11