Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis
Autoři:
Darci R. Smith aff001; Charles J. Shoemaker aff002; Xiankun Zeng aff003; Aura R. Garrison aff001; Joseph W. Golden aff001; Chris Schellhase aff003; William Pratt aff001; Franco Rossi aff001; Collin J. Fitzpatrick aff001; Joshua Shamblin aff001; Adrienne Kimmel aff001; Justine Zelko aff001; Olivier Flusin aff002; Jeffrey W. Koehler aff002; Jun Liu aff003; Kayla M. Coffin aff003; Keersten M. Ricks aff002; Matt A. Voorhees aff002; Randal J. Schoepp aff002; Connie S. Schmaljohn aff004
Působiště autorů:
Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, United States of America
aff001; Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, United States of America
aff002; Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, United States of America
aff003; Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, United States of America
aff004
Vyšlo v časopise:
Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008050
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008050
Souhrn
Crimean-Congo hemorrhagic fever (CCHF) is the most medically important tick-borne viral disease of humans and tuberculosis is the leading cause of death worldwide by a bacterial pathogen. These two diseases overlap geographically, however, concurrent infection of CCHF virus (CCHFV) with mycobacterial infection has not been assessed nor has the ability of virus to persist and cause long-term sequela in a primate model. In this study, we compared the disease progression of two diverse strains of CCHFV in the recently described cynomolgus macaque model. All animals demonstrated signs of clinical illness, viremia, significant changes in clinical chemistry and hematology values, and serum cytokine profiles consistent with CCHF in humans. The European and Asian CCHFV strains caused very similar disease profiles in monkeys, which demonstrates that medical countermeasures can be evaluated in this animal model against multiple CCHFV strains. We identified evidence of CCHFV persistence in the testes of three male monkeys that survived infection. Furthermore, the histopathology unexpectedly revealed that six additional animals had evidence of a latent mycobacterial infection with granulomatous lesions. Interestingly, CCHFV persisted within the granulomas of two animals. This study is the first to demonstrate the persistence of CCHFV in the testes and within the granulomas of non-human primates with concurrent latent tuberculosis. Our results have important public health implications in overlapping endemic regions for these emerging pathogens.
Klíčová slova:
Cytokines – Fevers – Hematology – Macaque – Crimean-Congo hemorrhagic fever – Granulomas – Viremia
Zdroje
1. Estrada-Pena A, Sanchez N, Estrada-Sanchez A. An assessment of the distribution and spread of the tick Hyalomma marginatum in the western Palearctic under different climate scenarios. Vector Borne Zoonotic Dis. 2012;12(9):758–68. doi: 10.1089/vbz.2011.0771 22448680.
2. Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip Perspect Infect Dis. 2009;2009:593232. doi: 10.1155/2009/593232 19277106; PubMed Central PMCID: PMC2648658.
3. Swanepoel R, Gill DE, Shepherd AJ, Leman PA, Mynhardt JH, Harvey S. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989;11 Suppl 4:S794–800. doi: 10.1093/clinids/11.supplement_4.s794 2749111.
4. Akinci E, Bodur H, Leblebicioglu H. Pathogenesis of Crimean-Congo hemorrhagic fever. Vector Borne Zoonotic Dis. 2013;13(7):429–37. doi: 10.1089/vbz.2012.1061 23663164.
5. WHO. 2018 Annual review of diseases prioritized under the Research and Development Blueprint. Geneva, Switzerland: World Health Organization, 2018.
6. Schmaljohn CS, Nichol ST. Bunyaviridae, in Fields Virology. 5th edn. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1741–89.
7. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100(1):159–89. doi: 10.1016/j.antiviral.2013.07.006 23906741.
8. Ince Y, Yasa C, Metin M, Sonmez M, Meram E, Benkli B, et al. Crimean-Congo hemorrhagic fever infections reported by ProMED. Int J Infect Dis. 2014;26:44–6. doi: 10.1016/j.ijid.2014.04.005 24947424.
9. Leblebicioglu H, Ozaras R, Irmak H, Sencan I. Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res. 2016;126:21–34. doi: 10.1016/j.antiviral.2015.12.003 26695860.
10. Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3(5):556–62. doi: 10.1038/s41564-018-0141-7 29632370.
11. Flusin O, Iseni F, Rodrigues R, Paranhos-Baccala G, Crance JM, Marianneau P, et al. [Crimean-Congo hemorrhagic fever: basics for general practitioners]. Med Trop (Mars). 2010;70(5–6):429–38. 21520641.
12. Appannanavar SB, Mishra B. An update on crimean congo hemorrhagic Fever. J Glob Infect Dis. 2011;3(3):285–92. doi: 10.4103/0974-777X.83537 21887063; PubMed Central PMCID: PMC3162818.
13. World Health Organization. Global Tuberculosis Report 2018. Available from: http://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf?ua=1.
14. Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol. 2004;110(1):2–12. 14986673.
15. Perez-Lago L, Navarro Y, Garcia-de-Viedma D. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review. Res Vet Sci. 2014;97 Suppl:S94–S100. Epub 2013/12/24. doi: 10.1016/j.rvsc.2013.11.008 24360647.
16. Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev. 2011;24(2):351–76. doi: 10.1128/CMR.00042-10 21482729; PubMed Central PMCID: PMC3122491.
17. Foreman TW, Mehra S, Lackner AA, Kaushal D. Translational Research in the Nonhuman Primate Model of Tuberculosis. ILAR J. 2017;58(2):151–9. doi: 10.1093/ilar/ilx015 28575319.
18. Conger NG, Paolino KM, Osborn EC, Rusnak JM, Gunther S, Pool J, et al. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21(1):23–31. doi: 10.3201/eid2101.141413 25529825; PubMed Central PMCID: PMC4285246.
19. Duh D, Nichol ST, Khristova ML, Saksida A, Hafner-Bratkovic I, Petrovec M, et al. The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol J. 2008;5:7. doi: 10.1186/1743-422X-5-7 18197964; PubMed Central PMCID: PMC2266736.
20. Olschlager S, Gabriel M, Schmidt-Chanasit J, Meyer M, Osborn E, Conger NG, et al. Complete sequence and phylogenetic characterisation of Crimean-Congo hemorrhagic fever virus from Afghanistan. J Clin Virol. 2011;50(1):90–2. doi: 10.1016/j.jcv.2010.09.018 21035389.
21. Satterly NG, Voorhees MA, Ames AD, Schoepp RJ. Comparison of MagPix Assays and Enzyme-Linked Immunosorbent Assay for Detection of Hemorrhagic Fever Viruses. J Clin Microbiol. 2017;55(1):68–78. doi: 10.1128/JCM.01693-16 27795340; PubMed Central PMCID: PMC5228264.
22. Zivcec M, Metcalfe MG, Albarino CG, Guerrero LW, Pegan SD, Spiropoulou CF, et al. Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles. PLoS Negl Trop Dis. 2015;9(12):e0004259. doi: 10.1371/journal.pntd.0004259 26625182; PubMed Central PMCID: PMC4666410.
23. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15(4):307–417. doi: 10.1093/jmedent/15.4.307 113533.
24. Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203–14. doi: 10.1016/S1473-3099(06)70435-2 16554245.
25. Allavena P, Bianchi G, Zhou D, van Damme J, Jilek P, Sozzani S, et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol. 1994;24(12):3233–6. doi: 10.1002/eji.1830241249 7805752.
26. Yoshimura T, Galligan C, Takahashi M, Chen K, Liu M, Tessarollo L, et al. Non-Myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein-1/CCL2. Front Immunol. 2014;4:482. doi: 10.3389/fimmu.2013.00482 24432017; PubMed Central PMCID: PMC3882876.
27. Ergonul O, Seref C, Eren S, Celikbas A, Baykam N, Dokuzoguz B, et al. Cytokine response in crimean-congo hemorrhagic fever virus infection. J Med Virol. 2017;89(10):1707–13. doi: 10.1002/jmv.24864 28547808.
28. Papa A, Tsergouli K, Caglayik DY, Bino S, Como N, Uyar Y, et al. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever. J Med Virol. 2016;88(1):21–7. doi: 10.1002/jmv.24312 26118413.
29. Ergonul O, Celikbas A, Baykam N, Eren S, Dokuzoguz B. Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: severity criteria revisited. Clin Microbiol Infect. 2006;12(6):551–4. doi: 10.1111/j.1469-0691.2006.01445.x 16700704.
30. Swanepoel R, Shepherd AJ, Leman PA, Shepherd SP, McGillivray GM, Erasmus MJ, et al. Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36(1):120–32. doi: 10.4269/ajtmh.1987.36.120 3101525.
31. Papa A, Mirazimi A, Koksal I, Estrada-Pena A, Feldmann H. Recent advances in research on Crimean-Congo hemorrhagic fever. J Clin Virol. 2015;64:137–43. doi: 10.1016/j.jcv.2014.08.029 25453328; PubMed Central PMCID: PMC4346445.
32. Emmerich P, Mika A, von Possel R, Rackow A, Liu Y, Schmitz H, et al. Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)—Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests. PLOS Neglected Tropical Diseases. 2018;12(3):e0006366. doi: 10.1371/journal.pntd.0006366 29579040
33. Liu D, Li Y, Zhao J, Deng F, Duan X, Kou C, et al. Fine Epitope Mapping of the Central Immunodominant Region of Nucleoprotein from Crimean-Congo Hemorrhagic Fever Virus (CCHFV). PLOS ONE. 2014;9(11):e108419. doi: 10.1371/journal.pone.0108419 25365026
34. Ergonul O, Battal I. Potential sexual transmission of Crimean-Congo hemorrhagic fever infection. Jpn J Infect Dis. 2014;67(2):137–8. 24647261.
35. Pshenichnaya NY, Sydenko IS, Klinovaya EP, Romanova EB, Zhuravlev AS. Possible sexual transmission of Crimean-Congo hemorrhagic fever. Int J Infect Dis. 2016;45:109–11. doi: 10.1016/j.ijid.2016.02.1008 26972040.
36. Aksoy HZ, Yilmaz G, Aksoy F, Koksal I. Crimean-Congo haemorrhagic fever presenting as epididymo-orchitis. J Clin Virol. 2010;48(4):282–4. doi: 10.1016/j.jcv.2010.06.002 20598630.
37. Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, et al. Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors. Cell Host Microbe. 2018;24(3):405–16 e3. Epub 2018/09/04. doi: 10.1016/j.chom.2018.08.003 30173956.
38. Rodriguez LL, De Roo A, Guimard Y, Trappier SG, Sanchez A, Bressler D, et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179 Suppl 1:S170–6. doi: 10.1086/514291 9988181.
39. Rowe AK, Bertolli J, Khan AS, Mukunu R, Muyembe-Tamfum JJ, Bressler D, et al. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidemies a Kikwit. J Infect Dis. 1999;179 Suppl 1:S28–35. doi: 10.1086/514318 9988162.
40. Martini GA, Schmidt HA. [Spermatogenic transmission of the "Marburg virus". (Causes of "Marburg simian disease")]. Klin Wochenschr. 1968;46(7):398–400. doi: 10.1007/bf01734141 4971902.
41. Smith DH, Johnson BK, Isaacson M, Swanapoel R, Johnson KM, Killey M, et al. Marburg-virus disease in Kenya. Lancet. 1982;1(8276):816–20. doi: 10.1016/s0140-6736(82)91871-2 6122054.
42. McCormick JB, Fisher-Hoch SP. Lassa fever. Curr Top Microbiol Immunol. 2002;262:75–109. doi: 10.1007/978-3-642-56029-3_4 11987809.
43. Malvy D, McElroy AK, de Clerck H, Gunther S, van Griensven J. Ebola virus disease. Lancet. 2019;393(10174):936–48. Epub 2019/02/20. doi: 10.1016/S0140-6736(18)33132-5 30777297.
44. Garrison AR, Shoemaker CJ, Golden JW, Fitzpatrick CJ, Suschak JJ, Richards MJ, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11(9):e0005908. doi: 10.1371/journal.pntd.0005908 28922426; PubMed Central PMCID: PMC5619839.
45. Prophet EB, Mills B., Arrington J.B., and Sobin L.H. Laboratory Methods for Histotechnology. Washington D.C.: Armed Forces Institute of Pathology; 1992.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Choroby jater v ordinaci praktického lékaře – význam jaterních testů
- Diagnostický algoritmus při podezření na syndrom periodické horečky
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11