The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study


Autoři: Lana Fani aff001;  Kimberly D. van der Willik aff001;  Daniel Bos aff001;  Maarten J. G. Leening aff001;  Peter J. Koudstaal aff005;  Dimitris Rizopoulos aff006;  Rikje Ruiter aff001;  Bruno H. C. Stricker aff001;  Maryam Kavousi aff001;  M. Arfan Ikram aff001;  M. Kamran Ikram aff001
Působiště autorů: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands aff001;  Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands aff002;  Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands aff003;  Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands aff004;  Department of Neurology, Erasmus MC, Rotterdam, the Netherlands aff005;  Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands aff006
Vyšlo v časopise: The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med 17(5): e32767. doi:10.1371/journal.pmed.1003115
Kategorie: Research Article
doi: 10.1371/journal.pmed.1003115

Souhrn

Background

Atherosclerotic cardiovascular disease (ASCVD) is driven by multifaceted contributions of the immune system. However, the dysregulation of immune cells that leads to ASCVD is poorly understood. We determined the association of components of innate and adaptive immunity longitudinally with ASCVD, and assessed whether arterial calcifications play a role in this association.

Methods and findings

Granulocyte (innate immunity) and lymphocyte (adaptive immunity) counts were determined 3 times (2002–2008, mean age 65.2 years; 2009–2013, mean age 69.0 years; and 2014–2015, mean age 78.5 years) in participants of the population-based Rotterdam Study without ASCVD at baseline. Participants were followed-up for ASCVD or death until 1 January 2015. A random sample of 2,366 underwent computed tomography at baseline to quantify arterial calcification volume in 4 vessel beds. We studied the association between immunity components with risk of ASCVD and assessed whether immunity components were related to arterial calcifications at baseline. Of 7,730 participants (59.4% women), 801 developed ASCVD during a median follow-up of 8.1 years. Having an increased granulocyte count increased ASCVD risk (adjusted hazard ratio for doubled granulocyte count [95% CI] = 1.78 [1.34–2.37], P < 0.001). Higher granulocyte counts were related to larger calcification volumes in all vessels, most prominently in the coronary arteries (mean difference in calcium volume [mm3] per SD increase in granulocyte count [95% CI] = 32.3 [9.9–54.7], P < 0.001). Respectively, the association between granulocyte count and incident coronary heart disease and stroke was partly mediated by coronary artery calcification (overall proportion mediated [95% CI] = 19.0% [−10% to 32.3%], P = 0.08) and intracranial artery calcification (14.9% [−10.9% to 19.1%], P = 0.05). A limitation of our study is that studying the etiology of ASCVD remains difficult within an epidemiological setting due to the limited availability of surrogates for innate and especially adaptive immunity.

Conclusions

In this study, we found that an increased granulocyte count was associated with a higher risk of ASCVD in the general population. Moreover, higher levels of granulocytes were associated with larger volumes of arterial calcification. Arterial calcifications may explain a proportion of the link between granulocytes and ASCVD.

Klíčová slova:

Blood cells – Blood counts – Calcification – Coronary heart disease – Granulocytes – Innate immune system – Lymphocytes – Acquired immune system


Zdroje

1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res. 2017;121(6):677–94. doi: 10.1161/CIRCRESAHA.117.308903 28860318

2. Fernandez-Ruiz I. Immune system and cardiovascular disease. Nat Rev Cardiol. 2016;13(9):503. doi: 10.1038/nrcardio.2016.127 27516069

3. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol. 2004;5(10):971–4. doi: 10.1038/ni1004-971 15454919

4. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. doi: 10.1056/NEJMra043430 15843671

5. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018;72(17):2071–81. doi: 10.1016/j.jacc.2018.08.1043 30336831

6. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16(3):171–81. doi: 10.1038/nrmicro.2017.149 29307889

7. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26. doi: 10.1056/NEJM199901143400207 9887164

8. Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752–62. doi: 10.1056/NEJMoa1809798 30415610

9. Anderson KM, Olson KE, Estes KA, Flanagan K, Gendelman HE, Mosley RL. Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl Neurodegener. 2014;3(1):25. doi: 10.1186/2047-9158-3-25 25671101

10. van der Willik KD, Fani L, Rizopoulos D, Licher S, Fest J, Schagen SB, et al. Balance between innate versus adaptive immune system and the risk of dementia: a population-based cohort study. J Neuroinflammation. 2019;16(1):68. doi: 10.1186/s12974-019-1454-z 30927918

11. Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2016;13(3):167–79. doi: 10.1038/nrcardio.2015.169 26525543

12. Kobayashi SD, DeLeo FR. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med. 2009;1(3):309–33. doi: 10.1002/wsbm.32 20836000

13. Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238(1):1–9. doi: 10.1016/j.cellimm.2005.12.005 16442516

14. Fest J, Ruiter R, Mulder M, Groot Koerkamp B, Ikram MA, Stricker BH, et al. The systemic immune-inflammation index is associated with an increased risk of incident cancer—a population-based cohort study. Int J Cancer. 2020;146(3):692–8. doi: 10.1002/ijc.32303 30924141

15. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5. doi: 10.1126/science.1183021 20075244

16. Hu B, Yang XR, Xu Y, Sun YF, Sun C, Guo W, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014;20(23):6212–22. doi: 10.1158/1078-0432.CCR-14-0442 25271081

17. Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev Cardiovasc Ther. 2016;14(5):573–7. doi: 10.1586/14779072.2016.1154788 26878164

18. Li Y, Wang B, Zhou S, Jiang L, Yang S, Liu X, et al. Do routine blood test results help in the diagnosis of spine tumors? A retrospective study of the significance of pretreatment neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios from 503 spine tumor patients. Medicine (Baltimore). 2019;98(15):e14902.

19. Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017;32(9):807–50. doi: 10.1007/s10654-017-0321-4 29064009

20. Fest J, Ruiter R, Ikram MA, Voortman T, van Eijck CHJ, Stricker BH. Reference values for white blood-cell-based inflammatory markers in the Rotterdam Study: a population-based prospective cohort study. Sci Rep. 2018;8(1):10566. doi: 10.1038/s41598-018-28646-w 30002404

21. Leening MJ, Kavousi M, Heeringa J, van Rooij FJ, Verkroost–van Heemst J, Deckers JW, et al. Methods of data collection and definitions of cardiac outcomes in the Rotterdam Study. Eur J Epidemiol. 2012;27(3):173–85. doi: 10.1007/s10654-012-9668-8 22388767

22. Wieberdink RG, Ikram MA, Hofman A, Koudstaal PJ, Breteler MM. Trends in stroke incidence rates and stroke risk factors in Rotterdam, the Netherlands from 1990 to 2008. Eur J Epidemiol. 2012;27(4):287–95. doi: 10.1007/s10654-012-9673-y 22426770

23. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976;54(5):541–53. 1088404

24. Elias-Smale SE, Wieberdink RG, Odink AE, Hofman A, Hunink MG, Koudstaal PJ, et al. Burden of atherosclerosis improves the prediction of coronary heart disease but not cerebrovascular events: the Rotterdam Study. Eur Heart J. 2011;32(16):2050–8. doi: 10.1093/eurheartj/ehr125 21606087

25. Odink AE, van der Lugt A, Hofman A, Hunink MG, Breteler MM, Krestin GP, et al. Risk factors for coronary, aortic arch and carotid calcification; the Rotterdam Study. J Hum Hypertens. 2010;24(2):86–92. doi: 10.1038/jhh.2009.42 19494836

26. de Weert TT, de Monye C, Meijering E, Booij R, Niessen WJ, Dippel DW, et al. Assessment of atherosclerotic carotid plaque volume with multidetector computed tomography angiography. Int J Cardiovasc Imaging. 2008;24(7):751–9. doi: 10.1007/s10554-008-9309-1 18373211

27. Bos D, van der Rijk MJ, Geeraedts TE, Hofman A, Krestin GP, Witteman JC, et al. Intracranial carotid artery atherosclerosis: prevalence and risk factors in the general population. Stroke. 2012;43(7):1878–84. doi: 10.1161/STROKEAHA.111.648667 22569939

28. WHO Study Group on Diabetes Mellitus, World Health Organization. Diabetes mellitus. Report of a WHO Study Group. World Health Organization Technical Report Series 727. Geneva: World Health Organization; 1985.

29. Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw. 2010;35(9). doi: 10.18637/jss.v035.i09

30. Rizopoulos D. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J Stat Softw. 2016;72(7). doi: 10.18637/jss.v072.i07

31. VanderWeele TJ. A unification of mediation and interaction: a 4-way decomposition. Epidemiology. 2014;25(5):749–61. doi: 10.1097/EDE.0000000000000121 25000145

32. Rubin DB. Multiple imputation for nonresponse in surveys. Hoboken (NJ): John Wiley & Sons; 1987.

33. Therneau TM. A package for survival analysis in R. New York: Springer; 2005.

34. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1–147. Comprehensive R Archive Network; 2018 [cited 2020 Apr 20]. Available from: https://CRAN.R-project.org/package = nlme.

35. Suh B, Shin DW, Kwon HM, Yun JM, Yang HK, Ahn E, et al. Elevated neutrophil to lymphocyte ratio and ischemic stroke risk in generally healthy adults. PLoS ONE. 2017;12(8):e0183706. doi: 10.1371/journal.pone.0183706 28829826

36. Kim S, Eliot M, Koestler DC, Wu WC, Kelsey KT. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the Jackson Heart Study and modification by the Duffy antigen variant. JAMA Cardiol. 2018;3(6):455–62. doi: 10.1001/jamacardio.2018.1042 29801037

37. Angkananard T, Anothaisintawee T, McEvoy M, Attia J, Thakkinstian A. Neutrophil lymphocyte ratio and cardiovascular disease risk: a systematic review and meta-analysis. Biomed Res Int. 2018;2018:2703518. doi: 10.1155/2018/2703518 30534554

38. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. doi: 10.1056/NEJMoa1707914 28845751

39. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40. doi: 10.1016/S0140-6736(09)61717-7 20031199

40. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20. doi: 10.1056/NEJMoa1107477 23034020

41. IL6R Genetics Consortium Emerging Risk Factors Collaboration, Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205–13. doi: 10.1016/S0140-6736(11)61931-4 22421339

42. Malone K, Amu S, Moore AC, Waeber C. The immune system and stroke: from current targets to future therapy. Immunol Cell Biol. 2019;97(1):5–16. doi: 10.1111/imcb.12191 30022515

43. Lan X, Han X, Liu X, Wang J. Inflammatory responses after intracerebral hemorrhage: from cellular function to therapeutic targets. J Cereb Blood Flow Metab. 2019;39(1):184–6. doi: 10.1177/0271678X18805675 30346222

44. Seminog OO, Scarborough P, Wright FL, Rayner M, Goldacre MJ. Determinants of the decline in mortality from acute stroke in England: linked national database study of 795 869 adults. BMJ. 2019;365:l1778. doi: 10.1136/bmj.l1778 31122927

45. Ekker MS, Verhoeven JI, Vaartjes I, Jolink WMT, Klijn CJM, de Leeuw FE. Association of stroke among adults aged 18 to 49 years with long-term mortality. JAMA. 2019;321(21):2113–23. doi: 10.1001/jama.2019.6560 31121602

46. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43. doi: 10.1038/nrcardio.2015.2 25622848

47. Guo Y, Lip GY, Apostolakis S. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012;60(22):2263–70. doi: 10.1016/j.jacc.2012.04.063 23194937

48. Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60(1):26–39. doi: 10.1016/s0008-6363(02)00857-x 14522404

49. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. 2017;6(3):e005543. doi: 10.1161/JAHA.117.005543 28314799

50. Doring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol. 2015;35(2):288–95. doi: 10.1161/ATVBAHA.114.303564 25147339

Štítky
Interní lékařství

Článek vyšel v časopise

PLOS Medicine


2020 Číslo 5

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×