-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaCell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense
Autoři: Jiapei Yan aff001; Huiyun Yu aff001; Bo Li aff003; Anqi Fan aff001; Jeffrey Melkonian aff005; Xiue Wang aff004; Tong Zhou aff002; Jian Hua aff001
Působiště autorů: School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America aff001; Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China aff002; School of Applied Physics and Engineering, Cornell University, Ithaca, NY, United States of America aff003; State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China aff004; School of Integrative Plant Science, Crop and Soil Sciences, Cornell University, Ithaca, NY, United States of America aff005
Vyšlo v časopise: Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008094
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008094Souhrn
Stomatal closure defense and apoplastic defense are two major immunity mechanisms restricting the entry and propagation of microbe pathogens in plants. Surprisingly, activation of plant intracellular immune receptor NLR genes, while enhancing whole plant disease resistance, were sometimes linked to a defective stomatal defense in autoimmune mutants. Here we report the use of high temperature and genetic chimera to investigate the inter-dependence of stomatal and apoplastic defenses in autoimmunity. High temperature inhibits both stomatal and apoplastic defenses in the wild type, and it suppresses constitutive apoplastic defense responses and rescues the deficiency of stomatal closure response in autoimmune mutants. Chimeric plants have been generated to activate NLR only in guard cells or the non-guard cells. NLR activation in guard cells inhibits stomatal closure defense response in a cell autonomous manner likely through repressing ABA responses. At the same time, it leads to increased whole plant resistance accompanied by a slight increase in apoplastic defense. In addition, NLR activation in both guard and non-guard cells affects stomatal aperture and water potential. This study thus reveals that NLR activation has a differential effect on immunity in a cell type specific matter, which adds another layer of immune regulation with spatial information.
Klíčová slova:
Gene expression – Genetically modified plants – Leaves – Plant pathogens – Stomata – Guard cells – Mesophyll cells – Plant disease resistance
Zdroje
1. Sawinski K, Mersmann S, Robatzek S, Bohmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact 26 : 626–632. doi: 10.1094/MPMI-12-12-0288-CR 23441577
2. Zeng W, He SY (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153 : 1188–1198. doi: 10.1104/pp.110.157016 20457804
3. Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal Defense a Decade Later. Plant Physiol 174 : 561–571. doi: 10.1104/pp.16.01853 28341769
4. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126 : 969–980. doi: 10.1016/j.cell.2006.06.054 16959575
5. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature immunology 6 : 973. doi: 10.1038/ni1253 16177805
6. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124 : 803–814. doi: 10.1016/j.cell.2006.02.008 16497589
7. Jones JD, Dangl JL (2006) The plant immune system. Nature 444 : 323–329. doi: 10.1038/nature05286 17108957
8. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology 60 : 379–406. doi: 10.1146/annurev.arplant.57.032905.105346 19400727
9. Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T (2014) Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology 20 : 47–54. doi: 10.1016/j.pbi.2014.04.007 24835204
10. McLachlan DH, Kopischke M, Robatzek S (2014) Gate control: guard cell regulation by microbial stress. New Phytol 203 : 1049–1063. doi: 10.1111/nph.12916 25040778
11. Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198 : 1001–1016. doi: 10.1111/nph.12277 23594392
12. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Current opinion in plant biology 15 : 349–357. doi: 10.1016/j.pbi.2012.05.006 22705024
13. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66 : 487–511. doi: 10.1146/annurev-arplant-050213-040012 25494461
14. Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28 : 1–8. doi: 10.1016/j.pbi.2015.08.008 26343014
15. Su J, Zhang M, Zhang L, Sun T, Liu Y, et al. (2017) Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid. Plant Cell 29 : 526–542. doi: 10.1105/tpc.16.00577 28254778
16. Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, et al. (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS pathogens 7: e1002291. doi: 10.1371/journal.ppat.1002291 21998587
17. Mang HG, Qian W, Zhu Y, Qian J, Kang HG, et al. (2012) Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. Plant Cell 24 : 1271–1284. doi: 10.1105/tpc.112.096198 22454454
18. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14 : 310–317. doi: 10.1016/j.tplants.2009.03.006 19443266
19. Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. The Plant Cell 15 : 2636–2646. doi: 10.1105/tpc.015842 14576290
20. Kim TH, Hauser F, Ha T, Xue S, Bohmer M, et al. (2011) Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr Biol 21 : 990–997. doi: 10.1016/j.cub.2011.04.045 21620700
21. Yang DL, Shi Z, Bao Y, Yan J, Yang Z, et al. (2017) Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. Plant Physiol 175 : 424–437. doi: 10.1104/pp.17.00495 28701352
22. Yang S, Hua J (2004) A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16 : 1060–1071. doi: 10.1105/tpc.020479 15031411
23. Gou M, Zhang Z, Zhang N, Huang Q, Monaghan J, et al. (2015) Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis. Plant Physiol 169 : 2304–2323. doi: 10.1104/pp.15.00970 26408532
24. Cheng C, Gao X, Feng B, Sheen J, Shan L, et al. (2013) Plant immune response to pathogens differs with changing temperatures. Nat Commun 4 : 2530. doi: 10.1038/ncomms3530 24067909
25. Huot B, Castroverde CDM, Velasquez AC, Hubbard E, Pulman JA, et al. (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 8 : 1808. doi: 10.1038/s41467-017-01674-2 29180698
26. Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16 : 406–413. doi: 10.1016/j.pbi.2013.06.017 23856082
27. Alcazar R, Parker JE (2011) The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci 16 : 666–675. doi: 10.1016/j.tplants.2011.09.001 21963982
28. Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, et al. (2012) Complex effects of temperature on mosquito immune function. Proc Biol Sci 279 : 3357–3366. doi: 10.1098/rspb.2012.0638 22593107
29. Hua J (2014) Temperature and plant immunity. Temperature and Plant Development: Wiley Blackwell Publisher. pp. 163–180.
30. Wang Y, Bao Z, Zhu Y, Hua J (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact 22 : 498–506. doi: 10.1094/MPMI-22-5-0498 19348568
31. Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6: e1000844. doi: 10.1371/journal.ppat.1000844 20368979
32. Kim YS, An C, Park S, Gilmour SJ, Wang L, et al. (2017) CAMTA-Mediated Regulation of Salicylic Acid Immunity Pathway Genes in Arabidopsis Exposed to Low Temperature and Pathogen Infection. Plant Cell 29 : 2465–2477. doi: 10.1105/tpc.16.00865 28982964
33. Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4 : 6. doi: 10.1186/1746-4811-4-6 18284694
34. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133 : 462–469. doi: 10.1104/pp.103.027979 14555774
35. Liu XY, Sun YL, Korner CJ, Du XR, Vollmer ME, et al. (2015) Bacterial Leaf Infiltration Assay for Fine Characterization of Plant Defense Responses using the Arabidopsis thaliana-Pseudomonas syringae Pathosystem. Jove-Journal of Visualized Experiments.
36. Yu H, Yan J, Du X, Hua J (2018) Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of experimental botany 69 : 2693–2703. doi: 10.1093/jxb/ery073 29506225
37. Bauer H, Ache P, Lautner S, Fromm J, Hartung W, et al. (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology 23 : 53–57. doi: 10.1016/j.cub.2012.11.022 23219726
38. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature protocols 2 : 1565. doi: 10.1038/nprot.2007.199 17585298
39. Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems. Amsterdam; New York: Elsevier. xvi, 150 p. p.
40. Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, et al. (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34 : 434–443. doi: 10.1111/j.1365-3040.2010.02253.x 21062318
41. Boursiac Y, Lee SM, Romanowsky SM, Blank RR, Sladek C, et al. (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant physiology: pp. 110.159038.
42. Wright CA, Beattie GA (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci U S A 101 : 3269–3274. doi: 10.1073/pnas.0400461101 14981249
43. Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant physiology 107 : 141–148. doi: 10.1104/pp.107.1.141 12228349
44. Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, et al. (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7: e1000139. doi: 10.1371/journal.pbio.1000139 19564897
45. Wang Z, Meng P, Zhang X, Ren D, Yang S (2011) BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J 67 : 1081–1093. doi: 10.1111/j.1365-313X.2011.04659.x 21623975
46. Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A 99 : 16314–16318. doi: 10.1073/pnas.252461999 12446847
47. Prodhan MY, Munemasa S, Nahar MN-E-N, Nakamura Y, Murata Y (2018) Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant physiology: pp. 00321.02018.
48. Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27 : 64–70. doi: 10.1105/tpc.114.133090 25604442
Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř
Článek vyšel v časopisePLOS Pathogens
Nejčtenější tento týden
2019 Číslo 10- Jak souvisí postcovidový syndrom s poškozením mozku?
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
-
Všechny články tohoto čísla
- Type I interferon-dependent CCL4 is induced by a cGAS/STING pathway that bypasses viral inhibition and protects infected tissue, independent of viral burden
- A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment
- The ROP16III-dependent early immune response determines the subacute CNS immune response and type III Toxoplasma gondii survival
- Cooperativity between the 3’ untranslated region microRNA binding sites is critical for the virulence of eastern equine encephalitis virus
- Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment
- Diet–microbiome–disease: Investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome
- Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis
- Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry
- Does rotavirus turn on type 1 diabetes?
- Respiratory syncytial virus nonstructural proteins 1 and 2: Exceptional disrupters of innate immune responses
- Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids
- Parasite microbiome project: Grand challenges
- Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion
- Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer
- Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain
- Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission
- Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape
- USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection
- Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling
- Ebola virus-mediated T-lymphocyte depletion is the result of an abortive infection
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG
- Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals
- Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly
- P200 family protein IFI204 negatively regulates type I interferon responses by targeting IRF7 in nucleus
- Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies
- Fingolimod retains cytolytic T cells and limits T follicular helper cell infection in lymphoid sites of SIV persistence
- Independent effects on cellular and humoral immune responses underlie genotype-by-genotype interactions between Drosophila and parasitoids
- Nedd8 hydrolysis by UCH proteases in Plasmodium parasites
- Correction: Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster
- Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation
- The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation
- Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
- The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: Evidence for accelerated decay of duplex RNA
- Development of a new largely scalable in vitro prion propagation method for the production of infectious recombinant prions for high resolution structural studies
- A three-dimensional RNA motif mediates directional trafficking of Potato spindle tuber viroid from epidermal to palisade mesophyll cells in Nicotiana benthamiana
- PLOS Pathogens
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry
- Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání