#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Whole genome sequencing analysis of Streptococcus pneumoniae populations of serotypes 10A, 11A, 12F, 15B, and 33F involved in invasive pneumococcal disease in the Czech Republic in 2013–2023


Authors: J. Kozáková 1 ;  S. Vohrnová 1,2 ;  M. Honskus 1,2 ;  Z. Okonji 1,2 ;  P. Křížová 1
Authors place of work: Národní referenční laboratoř pro streptokokové nákazy, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha 1;  3. lékařská fakulta Univerzity Karlovy, Praha 2
Published in the journal: Epidemiol. Mikrobiol. Imunol. 74, 2025, č. 4, s. 191-204
Category: Původní práce
doi: https://doi.org/10.61568/emi/11-6600/20251001/141812

Summary

Aim: Whole Genome Sequencing (WGS) analysis of populations of Streptococcus pneumoniae of serotypes 10A, 11A, 12F, 15B, and 33F involved in invasive pneumococcal disease (IPD) in the Czech Republic (CR) in 2013–2023.

Materials and Methods: The analysed serotypes of S. pneumoniae have been included in the recently registered pneumococcal conjugate vaccines (PCV): PCV15 and PCV20. The epidemiological analysis of the incidence of selected serotypes was based on nationwide IPD surveillance data from 2013–2023. WGS was used to analyse 177 isolates of S. pneumoniae of five serotypes: 10A, 11A, 12F, 15B, and 33F recovered from IPD in CR in 2013–2023. The Illumina MiSeq platform was used for WGS. The WGS data were analysed using tools of the PubMLST database where WGS data have been publicly accessible.

Results: Epidemiological analysis of the incidence of S. pneumoniae serotypes 10A, 11A, 12F, 15B, and 33F involved in IPD showed their increase after the vaccines PCV7, PCV10, and PCV13 had been introduced in CR. IPD cases caused by serotype 10A peaked in 2015 (17 cases), serotype 11A was the most frequent cause in 2018 (19 cases), serotype 12F predominated in 2015 (18 cases), serotype 15B in 2023 (11 cases), and serotype 33F in 2015 (6 cases). During the COVID-19 pandemic, IPD cases caused by the listed serotypes declined. In the post-pandemic period, the involvement of serotypes 10A and 11A in IPD cases increased again, as did that of serotype 15B. WGS data analysis showed a clear dominance of a large and genetically compact cluster of ST-1551 among Czech isolates of serotype 10A. Czech serotype 11A isolates were assigned primarily to ST-62 or other related sequencing types. Czech serotype 12F isolates were part of three major clusters unrelated to each other (ST-218, ST-989, and ST-8060). Czech serotype 15B isolates showed a high genetic heterogeneity and belonged to three major European clusters (ST-162, ST-199, and ST-1262) with a predominance of ST-162 isolates. In our study, serotype 33F was only represented by six isolates, four of which were of ST-100.

Conclusion: Both Czech and European populations of S. pneumoniae of different serotypes show considerable heterogeneity. They include serotypes in which related isolates of a single ST (11A) predominate, as well as serotypes that consist of several completely unrelated clusters (12F, 15B). The structures of these individual populations are continually changing over time and also differ within individual European countries. It is important to monitor S. pneumoniae populations as closely as possible and to use the data obtained to evaluate the possibilities for introducing new PCVs in the Czech Republic.

Keywords:

surveillance – Streptococcus pneumoniae – whole genome sequencing – serotypes 10A, 11A, 12F, 15B, and 33F


Zdroje
  1. Vyhláška č. 275/2010 Sb. Vyhláška, kterou se mění vyhláška č. 473/2008 Sb., o systému epidemiologické bdělosti pro vybrané infekce. Příloha č. 21 invazivní pneumokoková onemocnění. Dostupné na www: https://www.zakonyprolidi.cz/cs/2010- 275.
  2. WHO. Pneumococcal vaccines WHO position paper –⁠ 2012. Wkly Epidemiol Rec., 2012;87(14):129–144.
  3. Kobayashi M, Leidner AJ, Gierke R, et al. Use of 21-Valent Pneumococcal Conjugate Vaccine Among U.S. Adults: Recommendations of the Advisory Committee on Immunization Practices –⁠ United States, 2024. MMWR Morb Mortal Wkly Rep., 2024;73(36):793–798. DOI: 10.15585/mmwr.mm7336a3. PMID: 39264843.
  4. Vaxcyte. Vaxcyte Reports Positive Data from Phase 2 Study of its 24-Valent Pneumococcal Conjugate Vaccine Candidate, VAX24, in Adults Aged 65 and Older and Full Six-Month Safety Data from Adult Phase 1/2 and Phase 2 Studies. 2023. Dostupné na www: https://investors.vaxcyte.com/news-releases/news-release-details/vaxcyte-reports-positive-data-phase-2-study-its-24-valent/.
  5. King LM, Lewnard JA. Health-economic burden attributable to novel serotypes in candidate 24and 31-valent pneumococcal conjugate vaccines. Vaccine, 2024;42(26):126310. DOI: 10.1016/j.vaccine.2024.126310. PMID: 39260055.
  6. Doporučení České vakcinologické společnosti. Dostupné na www: https://www.vakcinace.eu/doporuceni-a-stanoviska.
  7. ÚZIS. Aktuální data o proočkovanosti české populace. Dostupné na www: https://www.nzip.cz/data/ceo/analyticke-studie/ ceo-vakcinace-prehled/ceo-vakcinace-prehled.pdf.
  8. Moore MR, Link-Gelles R, Schaffner W, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis., 2015;15(3):301–309. DOI: 10.1016/S1473-3099(14)71081-3. PMID: 25656600.
  9. Balsells E, Guillot L, Nair H, et al. Serotype distribution of Strep­ tococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS One. 2017;12(5):e0177113. DOI: 10.1371/journal.pone.0177113. PMID: 28486544.
  10. Jayasinghe S, Menzies R, Chiu C, et al. Long-term Impact of a „3 + 0“ Schedule for 7and 13-Valent Pneumococcal Conjugate Vaccines on Invasive Pneumococcal Disease in Australia, 2002–2014. Clin Infect Dis., 2017;64(2):175–183. DOI: 10.1093/cid/ciw720. Epub 2016 Oct 21. PMID: 27986682.
  11. Sihvonen R, Siira L, Toropainen M, et al. Streptococcus pneumo­ niae antimicrobial resistance decreased in the Helsinki Metropolitan Area after routine 10-valent pneumococcal conjugate vaccination of infants in Finland. Eur J Clin Microbiol Infect Dis. 2017;36(11):2109–2116. DOI: 10.1007/s10096-017-3033-5. PMID: 28612153.
  12. Andrews N, Kent A, Amin-Chowdhury Z, et al. Effectiveness of the seven-valent and thirteen-valent pneumococcal conjugate vaccines in England: The indirect cohort design, 2006–2018. Va­ ccine, 2019;37(32):4491-8. DOI: 10.1016/j.vaccine.2019.06.071. PMID: 31272872.
  13. Kozáková J, Křížová P, Malý M. Impact of pneumococcal conjugate vaccine on invasive pneumococcal disease in children under 5 years of age in the Czech Republic. PLoS One. 2021;16(2):e0247862. DOI: 10.1371/journal.pone.0247862.
  14. Yildirim I, Lapidot R, Shaik-Dasthagirisaheb YB, et al. Invasive Pneumococcal Disease After 2 Decades of Pneumococcal Conjugate Vaccine Use. Pediatrics, 2024;153(1):e2023063039. DOI: 10.1542/peds.2023-063039. PMID: 38087952.
  15. Ben-Shimol S, Givon-Lavi N, Greenberg D, et al. Impact of pneumococcal conjugate vaccines introduction on antibiotic resistance of Streptococcus pneumoniae meningitis in children aged 5 years or younger, Israel, 2004 to 2016. Euro Surveill., 2018;23(47):1800081. DOI: 10.2807/1560-7917. ES.2018.23.47.1800081. PMID: 30482264.
  16. WHO. Estimating the impact of vaccines in reducing antimicrobial resistance and antibiotic use: technical report. 2024. Dostupné na www: https://iris.who.int/bitstream/handle/10665/379116/9789240098787-eng.pdf?sequence=1.
  17. Feikin DR, Kagucia EW, Loo JD, et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med., 2013;10(9):e1001517. DOI:10.1371/journal. pmed.1001517. PMID: 24086113.
  18. Principi N, Di Cara G, Bizzarri I, et al. Prevention of invasive pneumococcal disease: Problems emerged after some years of the 13-valent pneumococcal conjugate vaccine use. Curr Infect Dis Rep., 2018;20(1):1. DOI: 10.1007/s11908-018-0607-z.
  19. Yildirim I, Hanage WP, Lipsitch M, et al. Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine. 2010;29(2):283-8. DOI: 10.1016/j.vaccine.2010.10.032. PMID: 21029807.
  20. Varon E, Cohen R, Béchet S, et al. Invasive disease potential of pneumococci before and after the 13-valent pneumococcal conjugate vaccine implementation in children. Vaccine, 2015;33(46):6178–6185. DOI: 10.1016/j.vaccine.2015.10.015.PMID: 26476365.
  21. Didelot X, Walker AS, Peto TE, et al. Within-host evolution of bacterial pathogens. Nat Rev Microbiol., 2016;14(3):150–162. DOI: 10.1038/nrmicro.2015.13. PMID: 26806595.
  22. Gladstone RA, Lo SW, Lees JA, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43 : 338–346. DOI: 10.1016/j.ebiom.2019.04.021. PMID: 31003929.
  23. Bentley SD, Lo SW. Global genomic pathogen surveillance to inform vaccine strategies: a decade-long expedition in pneumococcal genomics. Genome Med., 2021;13(1):84. DOI: 10.1186/ s13073-021-00901-2. PMID: 34001237.
  24. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3 : 124. DOI: 10.12688/wellcomeopenres.14826.1. PMID: 30345391.
  25. Jansen van Rensburg MJ, Berger DJ, Yassine I, et al. Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing scheme, and a taxonomic life identification number barcoding system to investigate and define pneumococcal population structure. Microb Genom., 2024;10(8):001280. DOI: 10.1099/mgen.0.001280. PMID: 39137139.
  26. Zprávy Centra epidemiologie a mikrobiologie. Dostupné na www: https://szu.cz/publikace-szu/casopisy-v-szu/zpravy-centra-epidemiologie-a-mikrobiologie/.
  27. Kozáková J, Vohrnová S, Honskus M, et al. Streptococcus pneu­ moniae sérotypu 8 a 22F působící invazivní pneumokokové onemocnění v České republice v letech 2014–2020: analýza metodou sekvenace celého genomu (WGS). Epidemiol Mikrobiol Imunol., 2024;73(2):84–97. DOI: 10.61568/emi/116306/20240424/137081. PMID: 39060099.
  28. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics, 2010;11(5):1–12. DOI: 10.1002/0471250953.bi1105s31.
  29. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998;95(6):3140–3145. DOI: 10.1073/pnas.95.6.3140. PMID: 9501229.
  30. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998;144(Pt 11):3049 –⁠ 3060. DOI: 10.1099/00221287-144-11-3049. PMID: 9846740.
  31. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010;11 : 595. DOI: 10.1186/1471-2105-11-595. PMID: 21143983.
  32. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics, 1998;14(1):68–73. DOI: 10.1093/bioinformatics/14.1.68. PMID: 9520503.
  33. Inkscape. Software dostupný na www: https://inkscape.org/.
  34. Rokney A, Ben-Shimol S, Korenman Z, et al. Emergence of Streptococcus pneumoniae Serotype 12F after Sequential Introduction of 7and 13-Valent Vaccines, Israel. Emerg Infect Dis. 2018;24(3):453–461. DOI: 10.3201/eid2403.170769. PMID: 29460732.
  35. Levy C, Ouldali N, Caeymaex L, et al. Diversity of Serotype Replacement after Pneumococcal Conjugate Vaccine Implementation in Europe. J Pediatr., 2019;213 : 252-3.e3. DOI: 10.1016/j. jpeds.2019.07.057. PMID: 31561776.
  36. Sempere J, de Miguel S, González-Camacho F, et al. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front Microbiol. 2020;11 : 309. DOI: 10.3389/fmicb.2020.00309. PMID: 32174903.
  37. Cohen R, Levy C, Varon E. The latest news in France before distribution of third-generation pneumococcal conjugate vaccines. Infect Dis Now. 2024;54(5):104937. DOI: 10.1016/j.idnow.2024.104937. PMID: 38876363.
  38. Eldholm V, Osnes MN, Bjørnstad ML, et al. A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination. Genome Med., 2024;16(1):123. DOI: 10.1186/s13073-024-01396-3. PMID: 39456053.
  39. Cheng HR, Belman S, Salje H, et al. Estimating geographical spread of Streptococcus pneumoniae within Israel using genomic data. Microb Genom., 2024;10(6):001262. DOI: 10.1099/ mgen.0.001262. PMID: 38913413.
  40. Dalmieda J, Hitchcock M, Xu J. High diversity within and low but significant genetic differentiation among geographic and temporal populations of the global Streptococcus pneumoniae. Can J Microbiol., 2024;70(6):226–237. DOI: 10.1139/cjm-2023-0155. PMID: 38422492.
  41. Candeias C, Almeida ST, Paulo AC, et al. Streptococcus pneu­ moniae carriage, serotypes, genotypes, and antimicrobial resistance trends among children in Portugal, after introduction of PCV13 in National Immunization Program: A cross-sectional study. Vaccine, 2024;42(22):126219. DOI: 10.1016/j.vaccine.2024.126219. PMID: 39146858.
  42. Aguinagalde L, Corsini B, Domenech A, et al. Emergence of Amoxicillin-Resistant Variants of Spain9V-ST156 Pneumococci Expressing Serotype 11A Correlates with Their Ability to Evade the Host Immune Response. PLoS One. 2015;10(9):e0137565. DOI: 10.1371/journal.pone.0137565. PMID: 26368279.
  43. Del Amo E, Esteva C, Hernandez-Bou S, et al. Serotypes and Clonal Diversity of Streptococcus pneumoniae Causing Invasive Disease in the Era of PCV13 in Catalonia, Spain. PLoS One, 2016;11(3):e0151125. DOI: 10.1371/journal.pone.0151125. PMID: 26953887.
  44. Redin A, Ciruela P, de Sevilla MF, et al. Serotypes and Clonal Composition of Streptococcus pneumoniae Isolates Causing IPD in Children and Adults in Catalonia before 2013 to 2015 and after 2017 to 2019 Systematic Introduction of PCV13. Microbiol Spectr. 2021;9(3):e0115021. DOI: 10.1128/Spectrum.01150-21. PMID: 34878302.
  45. Rodriguez-Ruiz JP, Xavier BB, Stöhr W, et al. High-resolution genomics identifies pneumococcal diversity and persistence of vaccine types in children with community-acquired pneumonia in the UK and Ireland. BMC Microbiol, 2024;24(1):146. DOI: 10.1186/ s12866-024-03300-w. PMID: 38678217.
  46. Amin-Chowdhury Z, Groves N, Sheppard CL, et al. Invasive pneumococcal disease due to 22F and 33F in England: A tail of two serotypes. Vaccine, 2021;39(14):1997–2004. DOI: 10.1016/j.vaccine.2021.02.026. PMID: 33715901.
  47. Wyres KL, Lambertsen LM, Croucher NJ, et al. Pneumococcal capsular switching: a historical perspective. J Infect Dis., 2013;207(3):439–449. DOI: 10.1093/infdis/jis703. PMID: 23175765.
  48. Càmara J, Cubero M, Martín-Galiano AJ, et al. Evolution of the β-lactam-resistant Streptococcus pneumoniae PMEN3 clone over a 30 year period in Barcelona, Spain. J Antimicrob Chemo­ ther., 2018;73(11):2941–2951. DOI: 10.1093/jac/dky305. PMID: 30165641.
  49. González-Díaz A, Machado MP, Càmara J, et al. Two multi-fragment recombination events resulted in the β-lactam-resistant serotype 11A-ST6521 related to Spain9V-ST156 pneumococcal clone spreading in south-western Europe, 2008 to 2016. Euro Surveill., 2020;25(16):1900457. DOI: 10.2807/1560-7917. ES.2020.25.16.1900457. PMID: 32347199.
  50. Johnson CN, Wilde S, Tuomanen E, et al. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem Biol., 2024;31(2):195–206. DOI: 10.1016/j.chembiol.2023.11.003. PMID: 38052216.

Podpora projektu
Podpořeno z programového projektu Ministerstva zdravotnictví ČR s reg. č. NU22-09-00433.
Do redakce došlo dne 20. 1. 2025.
Adresa pro korespondenci:
MUDr. Jana Kozáková
SZÚ Praha Šrobárova 49/48 100 00 Praha 10
Štítky
Hygiena a epidemiologie Infekční lékařství Mikrobiologie

Článek vyšel v časopise

Epidemiologie, mikrobiologie, imunologie

Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 4/2025 (znalostní test z časopisu)
nový kurz

Denzitometrie v praxi: od kvalitního snímku po správnou interpretaci
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková

Eozinofilie – multioborová otázka?
Autoři: MUDr. Irena Krčmová, CSc.

Čelistně-ortodontické kazuistiky od A do Z
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA

Cesta od prvních příznaků RS k optimální léčbě
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#