Telerehabilitation in people with neurological diseases – current findings from clinical studies
Authors:
B. Grosserová 1; K. Novotná 1,2
Authors place of work:
Neurologická klinika a Centrum, klinických neurověd, 1. LF UK a VFN v Praze
1; Klinika rehabilitačního lékařství, 1. LF UK a VFN v Praze
2
Published in the journal:
Cesk Slov Neurol N 2025; 88(3): 169-182
Category:
Původní práce
doi:
https://doi.org/10.48095/cccsnn2025169
Summary
Introduction: Telerehabilitation seems to be a very promising alternative to conventional rehabilitation care and could also be beneficial for people with neurological diseases. Aim: The aim of the study was to map the existing published evidence in the field of telerehabilitation in adults with acquired neurological disease. Methods: A systematic search was conducted to identify available clinical studies published on telerehabilitation in people with neurological disease between 2010 and 2023 using a selected combination of keywords (telerehabilitation, telemonitoring, telemedicine, teleneurology, neurorehabilitation, multiple sclerosis, stroke, Parkinson’s disease, neurological disorders). Studies published in English and with participants under 18 years of age met the inclusion criteria. Studies focusing only on telemonitoring without rehabilitation intervention were excluded. The PEDro scale (1–11) was used to assess the quality of the studies. Based on this rating scale, studies of lower quality (< 4) were excluded, and then higher quality studies were analyzed in detail. Results: A total of 190 studies were identified. After removing duplicates and studies that did not meet the eligibility criteria (not focused on adult patients, were searches only, or full-text was not available), 111 studies remained for analysis. Of these, 49 were related to telerehabilitation for multiple sclerosis, 41 for stroke, 16 for Parkinson’s disease, 4 to telerehabilitation for speech disorders, and 8 for other diagnoses (4 craniotraumas, 2 spinal cord injuries, 1 amyotrophic lateral sclerosis, and 1 dementia). Interventions provided through telerehabilitation included most commonly cognitive training, then upper limb-focused therapy, combined training, gait training, or fatigue therapy. Conclusion: The results show that the interventions provided through telerehabilitation are very diverse and can produce results in some cases comparable to conventional rehabilitation. Telerehabilitation seems to be most useful for people with multiple sclerosis and stroke.
Keywords:
telerehabilitation – stroke – Multiple sclerosis – Parkinson‘s disease – neurological disease
Zdroje
1. Peretti A, Amenta F, Tayebati SK et al. Telerehabilitation: review of the state-of-the-art and areas of application. JMIR Rehabil Assist Technol 2017; 4 (2): e7. doi: 10.2196/rehab.7511.
2. Chang MC, Boudier-Revéret M. Usefulness of telerehabilitation for stroke patients during the COVID-19 pandemic. Am J Phys Med Rehabil 2020; 99 (7): 582. doi: 10.1097/PHM.0000000000001468.
3. Bernini S, Stasolla F, Panzarasa S et al. Cognitive telerehabilitation for older adults with neurodegenerative diseases in the COVID-19 era: a perspective study. Front Neurol 2021; 11: 623933. doi: 10.3389/fneur. 2020.623933.
4. Mantovani E, Zucchella C, Bottiroli S et al. Telemedicine and virtual reality for cognitive rehabilitation: a roadmap for the COVID-19 pandemic. Front Neurol 2020; 11: 926. doi: 10.3389/fneur.2020.00926.
5. Nuara A, Fabbri-Destro M, Scalona E et al. Telerehabilitation in response to constrained physical distance: an opportunity to rethink neurorehabilitative routines. J Neurol 2022; 269 (2): 627–638. doi: 10.1007/s00415-021-10397-w.
6. Yeroushalmi S, Maloni H, Costello K et al. Telemedicine and multiple sclerosis: a comprehensive literature review. J Telemed Telecare 2020; 26 (7–8): 400–413. doi: 10.1177/1357633X19840097.
7. Cacciante L, Kiper P, Garzon M et al. Telerehabilitation for people with aphasia: a systematic review and meta-analysis. J Commun Disord 2021; 92: 106111. doi: 10.1016/j.jcomdis.2021.106111.
8. Vellata C, Belli S, Balsamo F et al. Effectiveness of telerehabilitation on motor impairments, non-motor symptoms and compliance in patients with Parkinson‘s disease: a systematic review. Front Neurol 2021; 12: 627999. doi: 10.3389/fneur.2021.627999.
9. Özden F, Özkeskin M, Ak SM. Physical exercise intervention via telerehabilitation in patients with neurological disorders: a narrative literature review. Egypt J Neurol Psychiatry Neurosurg 2022; 58 (26). doi: 10.1186/s41983-022-00461-1.
10. Agostini M, Moja L, Banzi R et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare 2015; 21 (4): 202–213. doi: 10.1177/1357633X15572201.
11. Turolla A, Rossettini G, Viceconti A et al. Musculoskeletal physical therapy during the COVID-19 pandemic: is telerehabilitation the answer? Phys Ther 2020; 100 (8): 1260–1264. doi: 10.1093/ptj/pzaa093.
12. Duruturk N. Telerehabilitation intervention for type 2 diabetes. World J Diabetes 2020; 11 (6): 218-226. doi: 10.4239/wjd.v11.i6.218.
13. Cavalheiro AH, Cardoso JS, Rocha A et al. Effectiveness of tele-rehabilitation programs in heart failure: a systematic review and meta-analysis. Health Serv Insights 2021; 14: 11786329211021668. doi: 10.1177/11786329211021668.
14. Maher CG, Sherrington C, Herbert RD et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003; 83 (8): 713–721. doi: 10.1093/ptj/83.8.713.
15. Gauthier LV, Nichols-Larsen DS, Uswatte G et al. Video game rehabilitation for outpatient stroke (VIGoROUS): a multi-site randomized controlled trial of in-home, self-managed, upper-extremity therapy. EClinicalMedicine 2021; 43: 101239. doi: 10.1016/j.eclinm.2021.101239.
16. Cramer SC, Dodakian L, Le V et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomized clinical trial. JAMA Neurol 2019; 76 (9): 1079–1087. doi: 10.1001/jamaneurol.2019.1604.
17. Paik SM, Cramer SC. Predicting motor gains with home-based telerehabilitation after stroke. J Telemed Telecare 2023; 29 (10): 799–807. doi: 10.1177/1357633X211023353.
18. Adams RJ, Ellington AL, Kuccera KA et al. Telehealth-guided virtual reality for recovery of upper extremity function following stroke. OTJR (Thorofare N J) 2023; 43 (3): 446–456. doi: 10.1177/15394492231158375.
19. Hashemi Y, Taghizadeh G, Azad A et al. The effects of supervised and non-supervised upper limb virtual reality exercises on upper limb sensory-motor functions in patients with idiopathic Parkinson‘s disease. Hum Mov Sci 2022; 85: 102977. doi: 10.1016/j.humov.2022.102977.
20. Pruszyńska M, Milewska-Jędrzejczak M, Bednarski I et al. Towards effective telerehabilitation: assessing effects of applying augmented reality in remote rehabilitation of patients suffering from multiple sclerosis. ACM Trans Access Comput 2022; 15 (4): 1–14. doi: 10.1145/3560822.
21. Wolf SL, Sahu K, Bay RC et al. The HAAPI (Home Arm Assistance Progression Initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair 2015; 29 (10): 958–968. doi: 10.1177/1545968315575612.
22. Linder SM, Rosenfeldt AB, Bay RC et al. Improving quality of life and depression after stroke through telerehabilitation. Am J Occup Ther 2015; 69 (2): 6902290020p1-10. doi: 10.5014/ajot.2015.014498.
23. Kowalczewski J, Chong SL, Galea M et al. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair 2011; 25 (5): 412–422. doi: 10.1177/1545968310394869.
24. Ortiz-Rubio A, Cabrera-Martos I, Rodríguez-Torres J et al. Effects of a home-based upper limb training program in patients with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil 2016; 97 (12): 2027–2033. doi: 10.1016/j.apmr.2016.05.018.
25. Eldemir S, Guclu-Gunduz A, Eldemir K et al. The effect of task-oriented circuit training-based telerehabilitation on upper extremity motor functions in patients with Parkinson‘s disease: a randomized controlled trial. Parkinsonism Relat Disord 2023; 109: 105334. doi: 10.1016/j.parkreldis.2023.105334.
26. Smith MA, Tomita MR. Combined effects of telehealth and modified constraint-induced movement therapy for individuals with chronic hemiparesis. Int J Telerehabil 2020; 12 (1): 51–62. doi: 10.5195/ijt.2020.6300.
27. Uswatte G, Taub E, Lum P et al. Tele-rehabilitation of upper-extremity hemiparesis after stroke: proof-of-concept randomized controlled trial of in-home constraint-induced movement therapy. Restor Neurol Neurosci 2021; 39 (4): 303–318. doi: 10.3233/RNN-201100.
28. Amato MP, Goretti B, Viterbo RG et al. Computer-assisted rehabilitation of attention in patients with multiple sclerosis: results of a randomized, double-blind trial. Mult Scler 2014; 20 (1): 91–98. doi: 10.1177/1352458513501571.
29. Cerasa A, Gioia MC, Valentino P et al. Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 2013; 27 (4): 284–295. doi: 10.1177/1545968312465194.
30. Charvet LE, Yang J, Shaw MT et al. Cognitive function in multiple sclerosis improves with telerehabilitation: results from a randomized controlled trial. PLoS One 2017; 12 (5): e0177177. doi: 10.1371/journal.pone.0177177.
31. Stuifbergen AK, Becker H, Perez F et al. Computer-assisted cognitive rehabilitation in persons with multiple sclerosis: results of a multi-site randomized controlled trial with six month follow-up. Disabil Health J 2018; 11 (3): 427–434. doi: 10.1016/j.dhjo.2018.02.001.
32. Goodwin RA, Lincoln NB, das Nair R et al. Evaluation of NeuroPage as a memory aid for people with multiple sclerosis: a randomised controlled trial. Neuropsychol Rehabil 2020; 30 (1): 15–31. doi: 10.1080/09602011. 2018.1447973.
33. Pedullà L, Brichetto G, Tacchino A et al. Adaptive vs. non-adaptive cognitive training by means of a personalized app: a randomized trial in people with multiple sclerosis. J Neuroeng Rehabil 2016; 13 (1): 88. doi: 10.1186/s12984-016-0193-y.
34. van Balkom TD, Berendse HW, van der Werf YD et al. Effect of eight-week online cognitive training in Parkinson‘s disease: a double-blind, randomized, controlled trial. Parkinsonism Relat Disord 2022; 96: 80–87. doi: 10.1016/j.parkreldis.2022.02.018.
35. Doğan M, Ayvat E, Kılınç M. Telerehabilitation versus virtual reality supported task-oriented circuit therapy on upper limbs and trunk functions in patients with multiple sclerosis: a randomized controlled study. Mult Scler Relat Disord 2023; 71: 104558. doi: 10.1016/j.msard.2023.104558.
36. Flynn A, Preston E, Dennis S et al. Home-based exercise monitored with telehealth is feasible and acceptable compared to centre-based exercise in Parkinson‘s disease: a randomised pilot study. Clin Rehabil 2021; 35 (5): 728–739. doi: 10.1177/0269215520976265.
37. Hsieh HC. Training by using an adaptive foot switch and video games to improve balance and mobility following stroke: a randomised controlled trial. Brain Impairment 2019; 20 (1): 16–23. doi: 10.1017/BrImp.2018.15.
38. Chen J, Jin W, Dong WS et al. Effects of home-based telesupervising rehabilitation on physical function for stroke survivors with hemiplegia: a randomized controlled trial. Am J Phys Med Rehabil 2017; 96 (3): 152–160. doi: 10.1097/PHM.0000000000000559.
39. Nuic D, van de Weijer S, Cherif S et al. Home-based exergaming to treat gait and balance disorders in patients with Parkinson‘s disease: a phase II randomized controlled trial. Eur J Neurol 2024; 31 (1): e16055. doi: 10.1111/ene.16055.
40. Paul L, Renfrew L, Freeman J et al. Web-based physiotherapy for people affected by multiple sclerosis: a single blind, randomized controlled feasibility study. Clin Rehabil 2019; 33 (3): 473–484. doi: 10.1177/02692155188 17080.
41. Tallner A, Streber R, Hentschke C et al. Internet-supported physical exercise training for persons with multiple sclerosis – a randomised, controlled study. Int J Mol Sci 2016; 17 (10): 1667. doi: 10.3390/ijms17101667.
42. Yavas I, Kahraman T, Sagici O et al. Feasibility of telerehabilitation-based pelvic floor muscle training for urinary incontinence in people with multiple sclerosis: a randomized, controlled, assessor-blinded study. J Neurol Phys Ther 2023; 47 (4): 217–226. doi: 10.1097/NPT.0000000000000448.
43. Deng H, Durfee WK, Nuckley DJ et al. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial. Phys Ther 2012; 92 (2): 197–209. doi: 10.2522/ptj.20110018.
44. Fleming KM, Coote SB, Herring MP. Home-based pilates for symptoms of anxiety, depression and fatigue among persons with multiple sclerosis: an 8-week randomized controlled trial. Mult Scler 2021; 27 (14): 2267–2279. doi: 10.1177/13524585211009216.
45. Gandolfi M, Geroin C, Dimitrova E et al. Virtual reality telerehabilitation for postural instability in Parkinson‘s disease: a multicenter, single-blind, randomized, controlled trial. Biomed Res Int 2017; 2017: 7962826. doi: 10.1155/2017/7962826.
46. Garcia A, Mayans B, Margelí C et al. A feasibility study to assess the effectiveness of Muvity: a telerehabilitation system for chronic post-stroke subjects. J Stroke Cerebrovasc Dis 2022; 31 (11): 106791. doi: 10.1016/j.jstrokecerebrovasdis.2022.106791.
47. Hoang P, Schoene D, Gandevia S et al. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis – a randomized controlled trial. Mult Scler 2016; 22 (1): 94–103. doi: 10.1177/1352458515579442.
48. Chen SC, Lin CH, Su SW et al. Feasibility and effect of interactive telerehabilitation on balance in individuals with chronic stroke: a pilot study. J Neuroeng Rehabil 2021; 18 (1): 71. doi: 10.1186/s12984-021-00866-8.
49. Kahraman T, Savci S, Ozdogar AT et al. Physical, cognitive and psychosocial effects of telerehabilitation-based motor imagery training in people with multiple sclerosis: a randomized controlled pilot trial. J Telemed Telecare 2020; 26 (5): 251–260. doi: 10.1177/ 1357633X18822355.
50. Lin KH, Chen CH, Chen YY et al. Bidirectional and multi-user telerehabilitation system: clinical effect on balance, functional activity, and satisfaction in patients with chronic stroke living in long-term care facilities. Sensors (Basel) 2014; 14 (7): 12451–12466. doi: 10.3390/s140712451.
51. Lloréns R, Noé E, Colomer C et al. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2015; 96 (3): 418–425.e2. doi: 10.1016/j.apmr.2014.10.019.
52. Paul L, Coulter EH, Miller L et al. Web-based physiotherapy for people moderately affected with multiple sclerosis; quantitative and qualitative data from a randomized, controlled pilot study. Clin Rehabil 2014; 28 (9): 924–935. doi: 10.1177/0269215514527995.
53. Pelicioni PHS, Lord SR, Menant JC et al. Combined reactive and volitional step training improves balance recovery and stepping reaction time in people with Parkinson‘s disease: a randomised controlled trial. Neurorehabil Neural Repair 2023; 37 (10): 694–704. doi: 10.1177/15459683231206743.
54. Prosperini L, Fortuna D, Giannì C et al. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair 2013; 27 (6): 516–525. doi: 10.1177/1545968313478484.
55. Sebastião E, McAuley E, Shigematsu R et al. Home- -based, square-stepping exercise program among older adults with multiple sclerosis: results of a feasibility randomized controlled study. Contemp Clin Trials 2018; 73: 136–144. doi: 10.1016/j.cct.2018.09.008.
56. Tarakci E, Tarakci D, Hajebrahimi F et al. Supervised exercises versus telerehabilitation. Benefits for persons with multiple sclerosis. Acta Neurol Scand 2021; 144 (3): 303–311. doi: 10.1111/ane.13448.
57. Asano M, Tai BC, Yeo FY et al. Home-based tele-rehabilitation presents comparable positive impact on self-reported functional outcomes as usual care: the Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) randomised controlled trial. J Telemed Telecare 2021; 27 (4): 231–238. doi: 10.1177/135763 3X19868905.
58. Guo L, Wang J, Wu Q et al. Clinical study of a wearable remote rehabilitation training system for patients with stroke: randomized controlled pilot trial. JMIR Mhealth Uhealth 2023; 11: e40416. doi: 10.2196/40416.
59. Krpič A, Savanović A, Cikajlo I. Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff‘s effort. Int J Rehabil Res 2013; 36 (2): 162–171. doi: 10.1097/MRR.0b013e32835dd63b.
60. Lee SJ, Lee EC, Kim M et al. Feasibility of dance therapy using telerehabilitation on trunk control and balance training in patients with stroke: a pilot study. Medicine (Baltimore) 2022; 101 (35): e30286. doi: 10.1097/MD.0000000000030286.
61. Conroy SS, Zhan M, Culpepper WJ et al. Self-directed exercise in multiple sclerosis: evaluation of a home automated tele-management system. J Telemed Telecare 2018; 24 (6): 410–419. doi: 10.1177/1357633X17702757.
62. Frevel D, Mäurer M. Internet-based home training is capable to improve balance in multiple sclerosis: a randomized controlled trial. Eur J Phys Rehabil Med 2015; 51 (1): 23–30.
63. Jeong IC, Karpatkin H, Finkelstein J. Physical telerehabilitation improves quality of life in patients with multiple sclerosis. Stud Health Technol Inform 2021; 284: 384–388. doi: 10.3233/SHTI210752.
64. Ehling R, Seebacher B, Harsányi A et al. Successful long-term management of spasticity in people with multiple sclerosis using a software application: results from a randomized, controlled, multicenter study. Eur J Neurol 2022; 29 (6): 1697–1707. doi: 10.1111/ene.15271.
65. Deepa S, Kumaresan A, Suganthirabab P et al. Improving work life balance among female educationists during the COVID-19 lockdown. Work 2023; 75 (2): 413–421. doi: 10.3233/WOR-220063.
66. Vasconcellos LS, Silva RS, Pachêco TB et al. Telerehabilitation-based trunk exercise training for motor symptoms of individuals with Parkinson‘s disease: a randomized controlled clinical trial. J Telemed Telecare 2023; 29 (9): 698–706. doi: 10.1177/1357633X211021740.
67. Campbell KR, Wilhelm JL, Pettigrew NC et al. Implementation and adoption of telerehabilitation for treating mild traumatic brain injury. J Neurol Phys Ther 2022; 46 (4): E1–E10. doi: 10.1097/NPT.0000000000000409.
68. Coulter EH, McLean AN, Hasler JP et al. The effectiveness and satisfaction of web-based physiotherapy in people with spinal cord injury: a pilot randomised controlled trial. Spinal Cord 2017; 55 (4): 383–389. doi: 10.1038/sc.2016.125.
69. Constantinescu G, Theodoros D, Russell T et al. Treating disordered speech and voice in Parkinson‘s disease online: a randomized controlled non-inferiority trial. Int J Lang Commun Disord 2011; 46 (1): 1–16. doi: 10.3109/13682822.2010.484848.
70. Cherney LR, Lee JB, Kim KA et al. Web-based Oral Reading for Language in Aphasia (Web ORLA®): a pilot randomized control trial. Clin Rehabil 2021; 35 (7): 976–987. doi: 10.1177/0269215520988475.
71. Maresca G, Maggio MG, Latella D et al. Toward improving poststroke aphasia: a pilot study on the growing use of telerehabilitation for the continuity of care. J Stroke Cerebrovasc Dis 2019; 28 (10): 104303. doi: 10.1016/j.jstrokecerebrovasdis.2019.104303.
72. Meltzer JA, Baird AJ, Steele RD et al. Computer-based treatment of poststroke language disorders: a non-inferiority study of telerehabilitation compared to in-person service delivery. Aphasiology 2017; 32 (3): 290–311. doi: 10.1080/02687038.2017.1355440.
73. Øra HP, Kirmess M, Brady MC et al. The effect of augmented speech-language therapy delivered by telerehabilitation on poststroke aphasia – a pilot randomized controlled trial. Clin Rehabil 2020; 34 (3): 369–381. doi: 10.1177/0269215519896616.
74. Theodoros DG, Hill AJ, Russell TG. Clinical and quality of life outcomes of speech treatment for Parkinson‘s disease delivered to the home via telerehabilitation: a noninferiority randomized controlled trial. Am J Speech Lang Pathol 2016; 25 (2): 214–232. doi: 10.1044/2015_AJSLP-15-0005.
75. Ogawa M, Oyama G, Morito K et al. Can AI make people happy? The effect of AI-based chatbot on smile and speech in Parkinson‘s disease. Parkinsonism Relat Disord 2022; 99: 43–46. doi: 10.1016/j.parkreldis.2022.04.018.
76. Woolf C, Caute A, Haigh Z et al. A comparison of remote therapy, face to face therapy and an attention control intervention for people with aphasia: a quasi-randomised controlled feasibility study. Clin Rehabil 2016; 30 (4): 359–373. doi: 10.1177/0269215515582074.
77. Gitlin LN, Winter L, Dennis MP et al. A biobehavioral home-based intervention and the well-being of patients with dementia and their caregivers: the COPE randomized trial. JAMA 2010; 304 (9): 983–991. doi: 10.1001/jama.2010.1253.
78. Motl RW, Dlugonski D, Wójcicki TR et al. Internet intervention for increasing physical activity in persons with multiple sclerosis. Mult Scler 2011; 17 (1): 116–128. doi: 10.1177/1352458510383148.
79. Pilutti LA, Dlugonski D, Sandroff BM et al. Randomized controlled trial of a behavioral intervention targeting symptoms and physical activity in multiple sclerosis. Mult Scler 2014; 20 (5): 594–601. doi: 10.1177/1352458513 503391.
80. Telfils R, Gelineau A, Daviet JC et al. Effect of individualized coaching at home on quality of life in subacute stroke patients. Int J Environ Res Public Health 2023; 20 (10): 5908. doi: 10.3390/ijerph20105908.
81. Rice IM, Rice LA, Motl RW. Promoting physical activity through a manual wheelchair propulsion intervention in persons with multiple sclerosis. Arch Phys Med Rehabil 2015; 96 (10): 1850–1858. doi: 10.1016/j.apmr.2015.06.011.
82. Learmonth YC, Adamson BC, Kinnett-Hopkins D et al. Results of a feasibility randomised controlled study of the guidelines for exercise in multiple sclerosis project. Contemp Clin Trials 2017; 54: 84–97. doi: 10.1016/j.cct.2016.11.012.
83. Isernia S, Pagliari C, Jonsdottir J et al. Efficiency and patient-reported outcome measures from clinic to home: the human empowerment aging and disability program for digital-health rehabilitation. Front Neurol 2019; 10: 1206. doi: 10.3389/fneur.2019.01206.
84. Plow M, Motl RW, Finlayson M et al. Intervention mediators in a randomized controlled trial to increase physical activity and fatigue self-management behaviors among adults with multiple sclerosis. Ann Behav Med 2020; 54 (3): 213–221. doi: 10.1093/abm/kaz033.
85. Ryan JM, Fortune J, Stennett A et al. Safety, feasibility, acceptability and effects of a behaviour-change intervention to change physical activity behaviour among people with multiple sclerosis: results from the iStep-MS randomised controlled trial. Mult Scler 2020; 26 (14): 1907–1918. doi: 10.1177/1352458519886231.
86. Ehde DM, Arewasikporn A, Alschuler KN et al. Moderators of treatment outcomes after telehealth self-management and education in adults with multiple sclerosis: a secondary analysis of a randomized controlled trial. Arch Phys Med Rehabil 2018; 99 (7): 1265–1272. doi: 10.1016/j.apmr.2017.12.012.
87. D‘hooghe M, Van Gassen G, Kos D et al. Improving fatigue in multiple sclerosis by smartphone-supported energy management: the MS TeleCoach feasibility study. Mult Scler Relat Disord 2018; 22: 90–96. doi: 10.1016/j.msard.2018.03.020.
88. Dorsey ER, Venkataraman V, Grana MJ et al. Randomized controlled clinical trial of „virtual house calls“ for Parkinson disease. JAMA Neurol 2013; 70 (5): 565–570. doi: 10.1001/jamaneurol.2013.123.
89. Fleisher JE, Hess SP, Klostermann EC et al. IN-HOME-PD: the effects of longitudinal telehealth-enhanced interdisciplinary home visits on care and quality of life for homebound individuals with Parkinson‘s disease. Parkinsonism Relat Disord 2022; 102: 68–76. doi: 10.1016/j.parkreldis.2022.07.017.
90. Vitacca M, Comini L, Tentorio M et al. A pilot trial of telemedicine-assisted, integrated care for patients with advanced amyotrophic lateral sclerosis and their caregivers. J Telemed Telecare 2010; 16 (2): 83–88. doi: 10.1258/jtt.2009.090604.
91. Bell KR, Brockway JA, Hart T et al. Scheduled telephone intervention for traumatic brain injury: a multicenter randomized controlled trial. Arch Phys Med Rehabil 2011; 92 (10): 1552–1560. doi: 10.1016/j.apmr.2011. 05.018.
92. Rietdijk R, Power E, Attard M et al. Acceptability of telehealth-delivered rehabilitation: experiences and perspectives of people with traumatic brain injury and their carers. J Telemed Telecare 2022; 28 (2): 122–134. doi: 10.1177/1357633X20923824.
93. Qomi M, Rakhshan M, Ebrahimi Monfared M et al. The effect of distance nurse-led fatigue management on fatigue, sleep quality, and self-efficacy in patients with multiple sclerosis: a quasi-experimental study. BMC Neurol 2023; 23 (1): 71. doi: 10.1186/s12883-023- 03115-8.
94. Turner AP, Hartoonian N, Sloan AP et al. Improving fatigue and depression in individuals with multiple sclerosis using telephone-administered physical activity counseling. J Consult Clin Psychol 2016; 84 (4): 297–309. doi: 10.1037/ccp0000086.
95. Chumbler NR, Li X, Quigley P et al. A randomized controlled trial on stroke telerehabilitation: the effects on falls self-efficacy and satisfaction with care. J Telemed Telecare 2015; 21 (3): 139–143. doi: 10.1177/13576 33X15571995.
96. Lo SHS, Chau JPC, Lau AYL et al. Virtual multidisciplinary stroke care clinic for community-dwelling stroke survivors: a randomized controlled trial. Stroke 2023; 54 (10): 2482–2490. doi: 10.1161/STROKEAHA.123.043605.
97. Dehghani A, Pourfarid Y, Hojat M. The effect of telenursing education of self-care on health-promoting behaviors in patients with multiple sclerosis during the COVID-19 pandemic: a clinical trial study. Mult Scler Relat Disord 2023; 70: 104507. doi: 10.1016/j.msard.2023.104507.
98. Finlayson M, Preissner K, Cho C et al. Randomized trial of a teleconference-delivered fatigue management program for people with multiple sclerosis. Mult Scler 2011; 17 (9): 1130–1140. doi: 10.1177/1352458511 404272.
99. Rochette A, Korner-Bitensky N, Bishop D et al. The YOU CALL-WE CALL randomized clinical trial: impact of a multimodal support intervention after a mild stroke. Circ Cardiovasc Qual Outcomes 2013; 6 (6): 674–679. doi: 10.1161/CIRCOUTCOMES.113.000375.
100. Saywell NL, Vandal AC, Mudge S et al. Telerehabilitation after stroke using readily available technology: a randomized controlled trial. Neurorehabil Neural Repair 2021; 35 (1): 88–97. doi: 10.1177/15459683209 71765.
101. Wan LH, Zhang XP, Mo MM et al. Effectiveness of goal-setting telephone follow-up on health behaviors of patients with ischemic stroke: a randomized controlled trial. J Stroke Cerebrovasc Dis 2016; 25 (9): 2259–2270. doi: 10.1016/j.jstrokecerebrovasdis.2016.05.010.
102. Wu Z, Xu J, Yue C et al. Collaborative care model based telerehabilitation exercise training program for acute stroke patients in China: a randomized controlled trial. J Stroke Cerebrovasc Dis 2020; 29 (12): 105328. doi: 10.1016/j.jstrokecerebrovasdis.2020.105328.
103. Gold SM, Friede T, Meyer B et al. Internet-delivered cognitive behavioural therapy programme to reduce depressive symptoms in patients with multiple sclerosis: a multicentre, randomised, controlled, phase 3 trial. Lancet Digit Health 2023; 5 (10): e668–e678. doi: 10.1016/S2589-7500 (23) 00109-7.
104. Fischer A, Schröder J, Vettorazzi E et al. An online programme to reduce depression in patients with multiple sclerosis: a randomised controlled trial. Lancet Psychiatry 2015; 2 (3): 217–223. doi: 10.1016/S2215-0366 (14) 00049-2.
105. Minen MT, Schaubhut KB, Morio K. Smartphone based behavioral therapy for pain in multiple sclerosis (MS) patients: a feasibility acceptability randomized controlled study for the treatment of comorbid migraine and ms pain. Mult Scler Relat Disord 2020; 46: 102489. doi: 10.1016/j.msard.2020.102489.
106. Cosio D, Jin L, Siddique J et al. The effect of telephone-administered cognitive-behavioral therapy on quality of life among patients with multiple sclerosis. Ann Behav Med 2011; 41 (2): 227–234. doi: 10.1007/s12160-010-9236-y.
107. Dobkin RD, Mann SL, Weintraub D et al. Innovating Parkinson‘s care: a randomized controlled trial of telemedicine depression treatment. Mov Disord 2021; 36 (11): 2549–2558. doi: 10.1002/mds.28548.
108. de Gier M, Beckerman H, Twisk J et al. Blended versus face-to-face cognitive behavioural therapy for severe fatigue in patients with multiple sclerosis: a non-inferiority RCT. Mult Scler 2023; 29 (10): 1316–1326. doi: 10.1177/13524585231185462.
109. Smith GC, Egbert N, Dellman-Jenkins M et al. Reducing depression in stroke survivors and their informal caregivers: a randomized clinical trial of a Web-based intervention. Rehabil Psychol 2012; 57 (3): 196–206. doi: 10.1037/a0029587.
110. Salgueiro C, Urrútia G, Cabanas-Valdés R. Influence of core-stability exercises guided by a telerehabilitation app on trunk performance, balance and gait performance in chronic stroke survivors: a preliminary randomized controlled trial. Int J Environ Res Public Health 2022; 19 (9): 5689. doi: 10.3390/ijerph190 95689.
111. Moumdjian L, Smedal T, Arntzen EC et al. Impact of the COVID-19 pandemic on physical activity and associated technology use in persons with multiple sclerosis: an international RIMS-SIG mobility survey study. Arch Phys Med Rehabil 2022; 103 (10): 2009–2015. doi: 10.1016/j.apmr.2022.06.001.
112. Pětioký J, Hodeikrová K, Trtílková M. Telerehabilitace: aktuální vývoj v České republice. Listy Klin Logoped 2021; 5 (2): 44–49. doi: 10.36833/lkl.2021.030.
113. MZČR. Zákon č. 240/2024 Sb.: zákon, kterým se mění zákon č. 372/2011 Sb., o zdravotních službách a podmínkách jejich poskytování (zákon o zdravotních službách), ve znění pozdějších předpisů, a další související zákony. [online]. Dostupné z: https: //www.zakonyprolidi.cz/cs/2024-240.
114. MZČR. Ministerstvo zdravotnictví představilo novelu zákona o elektronizaci zdravotnictví a další projekty digitalizace zdravotnictví. [online]. Dostupné z: https: //mzd.gov.cz/tiskove-centrum-mz/predstaveni-novely-zakona-o-el-zdravotnictvi-dalsi-projekty/.
115. Pětioký J, Hodeikrová K, Grünerová Lippertová M. Digitisation and telehealth – telemedicine in rehabilitation in the Czech environment. Vnitr Lek 2022; 68 (3): 166–171. doi: 10.36290/vnl.2022.033.
116. NÚKIB. Upozornění na rizika online konferenčních služeb. [online]. Dostupné z: https: //nukib.gov.cz/cs/infoservis/hrozby/1490-upozorneni-na-rizika-online-konferencnich-sluzeb/.
117. Homebalance. Komplexní řešení distanční terapie pro lepší život. [online]. Dostupné z: https: //www.home--balance.cz/.
118. Klinika Malvazinky. Telemedicína. [online]. Dostupné z: https: //www.klinika-malvazinky.cz/specialni-pro- gramy/telemedicina/.
119. Rehabilitační ústav Kladruby. Program podpory zdraví. [online]. Dostupné z: https: //www.rehabilitace.cz/poskytovana-pece/kvalita-pece/program-podpory-zdravi/?ftresult=distan%C4%8Dn%C3%AD+terapie.
120. Zimermanová H, Janatová M, Grünerová Lip- pertová M. Rehabilitace faciální parézy v důsledku léze lícního nervu v klinické praxi. Cesk Slov Neurol N 2024; 87 (5): 322–327. doi: 10.48095/cccsnn20 24322.
121. Richmond T, Peterson C, Cason J et al. American telemedicine association’s principles for delivering telerehabilitation services. Int J Telerehabil 2017; 9 (2): 63–68. doi: 10.5195/ijt.2017.6232.
122. Lee AC, Deutsch JE, Holdsworth L et al. Telerehabilitation in physical therapist practice: a clinical practice guideline from the American physical therapy association. Phys Ther 2024; 104 (5): 1–19. doi: 10.1093/ptj/ pzae045.
123. ASHA. Telepractice. [online]. Dostupné z: https: // www.asha.org/practice-portal/professional-issues/ telepractice/.
124. Speech Pathology Australia. International telepractice in speech pathology. [online]. Dostupné z: https: //www.speechpathologyaustralia.org.au/.
Štítky
Dětská neurologie Neurochirurgie NeurologieČlánek vyšel v časopise
Česká a slovenská neurologie a neurochirurgie

2025 Číslo 3
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Pleiotropně působící nootropikum – vinpocetin
- Nejčastější nežádoucí účinky venlafaxinu během terapie odeznívají
- Moje zkušenosti s Magnosolvem podávaným pacientům jako profylaxe migrény a u pacientů s diagnostikovanou spazmofilní tetanií i při normomagnezémii - MUDr. Dana Pecharová, neurolog
Nejčtenější v tomto čísle
- Změny a poruchy spánku a bdění navozené léky – narativní přehled
- Telerehabilitace u osob s neurologickým onemocněním – aktuální poznatky z klinických studií
- Úvodní informace o roli hypofrakcionované léčby gama nožem u mozkových metastáz
- Paraneoplastické extrapyramídové syndrómy