#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Trofoblastové kmeňové bunky, invázia trofoblastu a organoidy – pokroky v gynekológii


Autoři: Petra Gašparová 1 ;  Zuzana Ballová 1 ;  D. Bačenková 2 ;  M. Trebuňová 2 ;  Erik Dosedla 1
Působiště autorů: Department of Gynaecology and Obstetrics, Faculty of Medicine, University P. J. Safarik in Košice, Hospital AGEL Košice-Šaca Inc., Slovak Republic 1;  Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Slovak Republic 2
Vyšlo v časopise: Ceska Gynekol 2024; 89(2): 151-155
Kategorie: Přehledová práce
doi: https://doi.org/10.48095/cccg2024151

Souhrn

Súhrn: Ľudská placenta predstavuje životne dôležitú bariéru medzi matkou a vyvíjajúcim sa plodom počas tehotenstva. Porucha včasného vývoja placenty je spojená so závažnými poruchami tehotenstva. Napriek jej komplexnému vývoju stále nie sú úplne objasnené rôzne molekulárne procesy riadiace vývoj placenty a špecializáciu buniek trofoblastu. Jednou z hlavných prekážok je nedostatok vhodných bunkových modelových systémov. Tradičné dvojrozmerné (2D) bunkové kultúry nedokážu imitovať podmienky in vivo a nezachytávajú zložité medzibunkové interakcie nevyhnutné na štúdium vývoja placenty. Avšak trojrozmerné (3D) modely organoidov, odvodené z kmeňových buniek, ktoré replikujú prirodzenú organizáciu a architektúru buniek výrazne zlepšili naše chápanie správania sa trofoblastov a ich medicínskych aplikácií. Organoidy s relevantnými fenotypmi poskytujú cennú platformu na modelovanie fyziológie a patológie placenty, vrátane modelovania porúch placenty. Sú veľkým prísľubom pre personalizovanú medicínu, zlepšenie diagnostiky a hodnotenia účinnosti a bezpečnosti farmaceutických liečiv. Tento článok poskytuje stručný prehľad trofoblastových kmeňových buniek, invázie trofoblastu a rozvíjajúcej sa úlohy organoidov v gynekológii.

Klíčová slova:

organoidy – trofoblastové kmeňové bunky – invázia trofoblastu – komplikácie tehotenstva


Zdroje

1. Bačenková D, Trebuňová M, Čížková D et al. In vitro model of human trophoblast in early placentation. Biomedicines 2022; 10 (4): 904. doi: 10.3390/biomedicines10040904.

2. Knöfler M, Haider S, Saleh L et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Review Cell Mol Life Sci 2019; 76 (18): 3479–3496. doi: 10.1007/s00018-019-03104-6.

3. Augustyniak J, Bertero A, Coccini T et al. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39 (12): 1610–1622. doi: 10.1002/jat.3815.

4. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013; 85 (1): 3–10. doi: 10.1159/000345615.

5. Zhao Z, Chen X, Dowbaj AM et al. Organoids. Nat Rev Methods Primers 2022; 2 : 94. doi: 10.1038/s43586-022-00174-y.

6. Douglas GC, VandeVoort CA, Kumar P et al. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 2009; 30 (3): 228–240. doi: 10.1210/er.2009-0001.

7. Lawless L, Qin Y, Xie L et al. Trophoblast differentiation: mechanisms and implications for pregnancy complications. Nutrients 2023; 15 (16): 3564. doi: 10.3390/nu15163564.

8. Dong C, Beltcheva M, Gontarz P et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 2020; 9: e52504. doi: 10.7554/eLife.52504.

9. Liu X, Ouyang JF, Rossello FJ et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 2020; 586 (7827): 101–107. doi: 10.1038/s41586-020-2734-6.

10. Karvas RM, Khan SA, Verma S et al. Stem-cell--derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022; 29 (5): 810.e8–825.e8. doi: 10.1016/j.stem.2022.04.004.

11. Sheridan MA, Fernando RC, Gardner L et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 2020; 15 (10): 3441–3463. doi: 10.1038/s41596-020-0381-x.

12. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131 : 66–77. doi: 10.1016/j.semcdb.2022.03.039.

13. Zhuang BM, Cao DD, Liu XF et al. Application of a JEG-3 organoid model to study HLA-G function in the trophoblast. Front Immunol 2023; 14 : 1130308. doi: 10.3389/fimmu.2023.1130308.

14. Io S, Kondoh E, Chigusa Y et al. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26 (5): 611–633. doi: 10.1093/humupd/ dmaa020.

15. Okae H, Toh H, Sato T et al. Derivation of human trophoblast stem cells. Cell Stem Cell 2018; 22 (1): 50.e6–63.e6. doi: 10.1016/j.stem.2017.11.004.

16. Zhu JY, Pang ZJ, Yu YH. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev Obstet Gynecol 2012; 5 (3–4): e137–e143.

17. Knöfler M, Pollheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 2012; 33 Suppl (2): S55–S62. doi: 10.1016/j.placenta.2011.09.019.

18. Heidari-Khoei H, Esfandiari F, Hajari MA et al. Organoid technology in female reproductive biomedicine. Reprod Biol Endocrinol 2020; 18 (1): 64. doi: 10.1186/s12958-020-00621-z.

19. Morey R, Bui T, Fisch KM et al. Modeling placental development and disease using human pluripotent stem cells. Placenta 2023; 141 : 18–25. doi: 10.1016/j.placenta.2022.10.011.

20. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018; 19 (11): 671–687. doi: 10.1038/s41576 -⁠ 018-0051-9.

21. Corrò C, Novellasdemunt L, Li VS. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319 (1): C151–C165. doi: 10.1152/ajpcell.001 20.2020.

22. Han Y, Yang L, Lacko LA et al. Human organoid models to study SARS-CoV-2 infection. Nat Methods 2022; 19 (4): 418–428. doi: 10.1038/s41592-022-01453-y.

23. Wei Y, Zhang C, Fan G et al. Organoids as novel models for embryo implantation study. Reprod Sci 2021; 28 (6): 1637–1643. doi: 10.1007/s43032-021-00501-w.

24. Almeqdadi M, Mana MD, Roper J et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol 2019; 317 (3): C405–C419. doi: 10.1152/ajpcell.00300.2017.

25. Nikonorova VG, Chrishtop VV, Mironov VA et al. Advantages and potential benefits of using organoids in nanotoxicology. Cells 2023; 12 (4): 610. doi: 10.3390/cells12040610.

26. Wechsler ME, Shevchuk M, Peppas NA. Developing a multidisciplinary approach for engineering stem cell organoids. Ann Biomed Eng 2020; 48 (7): 1895–1904. doi: 10.1007/s104 39-019-02391-1.

27. Lehmann R, Lee CM, Shugart EC et al. Human organoids: a new dimension in cell biology. Mol Biol Cell 2019; 30 (10): 1129–1137. doi: 10.1091/mbc.E19-03-0135.

28. de Jongh D, Massey EK, Bunnik EM. VANGUARD consortium. Organoids: a systematic review of ethical issues. Stem Cell Res Ther 2022; 13 (1): 337. doi: 10.1186/s13287-022-02950-9.

29. Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2021; 28 (1): 35–51. doi: 10.1038/s414 18-020-0565-5.

30. Turco MY, Gardner L, Kay RG et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564 (7735): 263–267. doi: 10.1038/s41586-018-0753-3.

31. Heremans R, Jan Z, Timmerman D et al. Organoids of the female reproductive tract: innovative tools to study desired to unwelcome processes. Front Cell Dev Biol 2021; 9 : 661472. doi: 10.3389/fcell.2021.661472.

32. Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing disease modeling: the emergence of organoids in cellular systems. Cells 2023; 12 (6): 930. doi: 10.3390/cells12060930.

33. Cui K, Chen T, Zhu Y et al. Engineering placenta-like organoids containing endogenous vascular cells from human-induced pluripotent stem cells. Bioeng Transl Med 2022; 8 (1): e10390. doi: 10.1002/btm2.10390.

34. Cui Y, Zhao H, Wu S et al. Human female reproductive system organoids: applications in developmental biology, disease modelling, and drug discovery. Stem Cell Rev Rep 2020; 16 (6): 1173–1184. doi: 10.1007/s12015-020-10039-0.

35. Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99 (4): 531–553. doi: 10.1007/s00109-020-02 028-0.

ORCID authors

P. Gašparová 0000-0002-6354-6911

Z. Ballová 0000-0002-0605-948X

D. Bačenková 0000-0001-8459-849X

M. Trebuňová 0000-0001-5826-9692

E. Dosedla 0000-0001-8319-9008

Submitted/Doručené: 26. 10. 2023
Accepted/Prijaté: 1. 11. 2023
Assoc. Prof. Erik Dosedla, MD, PhD, MBA
Department of Gynaecology and Obstetrics
Faculty of Medicine
University P. J. Safarik in Košice
Hospital AGEL Košice-Šaca Inc.
Lúčna 57
040 15 Košice-Šaca
Slovak Republic
erik.dosedla@nke.agel.s
Štítky
Dětská gynekologie Gynekologie a porodnictví Reprodukční medicína

Článek vyšel v časopise

Česká gynekologie

Číslo 2

2024 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 2/2025 (znalostní test z časopisu)
nový kurz

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#