-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaSměruje použití mediánu ke statistickým neparametrickým postupům zpracování dat?
Okénko statistika – Analýza dat v neurologii – III.
Nebojme se mediánu a robustních statistik
Vyšlo v časopise: Cesk Slov Neurol N 2007; 70/103(6): 716-717
Kategorie: Dopis redakci
Vážený pane docente,
s potěšením sleduji Váš seriál o statistice na stránkách časopisu Čs. neurologie. Jednoduchou, srozumitelnou formou seznamujete se základními principy, které jsou však často lékařům cizí. Hned analyzují nějakými testy, ale vůbec se nezamýšlí nad strukturou dat. Proto považuji Vaše dílo za skvělé a moc za něj děkuji. V posledním čísle jsem také rád našel, že medián je výborný. Konečně to někdo napsal natvrdo. Laici ve statistice, a tedy i lékaři stále počítají průměry.
Mám dotaz. Když analýzy konzultuji s matematiky a statistiky, slýchávám nebo jsem to alespoň tak pochopil, že je vždy vhodnější se snažit mít normálně rozložená data, třeba i za cenu logaritmické transformace. To prý kvůli tomu, že se dají použít robustnější statistické testy jako t-test atd, tj. založené na normálním rozložení. Pokud jsem z Vašeho článku nabyl dojmu, že by bylo užitečné pracovat s mediánem (a já s tím souhlasím), musím však použít neparametrické statistické metody analýzy dat typu Mann-Whithney, Kruskal-Wallis apod. Takže už při klasifikaci dat na medián atd směruji další analýzy neparametrickým směrem. Jak to tedy je?
Ještě jednou díky za výuku nás lékařů-amatérů ve statistických metodách
MUDr. Aleš Bartoš, Ph.D.
AD Centrum
Psychiatrické centrum Praha
Ústavní 91
181 03 Praha 8 – Bohnice
a
3. LF UK a Neurologická klinika FNKV
e-mail: bartos@pcp.lf3.cuni.cz
Odpověď
Dobrý den, vážený pane doktore,
s radostí odpovídám, Vaše pochvala našeho snažení mne velmi potěšila. Jelikož dotaz, který vznášíte, je jeden z nejčastějších, věnuji mu zde určitý prostor. Dané téma následně podrobněji rozebereme přímo v některé kapitole našeho seriálu.
Výhodou normálního rozložení jednoznačně je, že má velmi dobře propracovaný a také laikům–nematematikům dostupný aparát hodnocení. Řada velmi standardních testů předpokládá existenci normálního rozložení. Jisté výsadní postavení normálního rozložení potom zajišťuje i styl výuky aplikované analýzy dat, kdy většina kurzů má čas právě na podrobné probrání tohoto fenoménu, ale již nemá dostatečný prostor pro jeho další typy. A tyto typy rozhodně existují, a to zcela legitimně. Bylo by možné jmenovat stovky velmi známých biologických parametrů, které ze své podstaty nemají normální rozložení. Metodicky lze konstatovat že:
- normální rozložení je u biologických znaků časté, nikoli ale univerzální
- s průkazností normálního rozložení bývá problém u menších vzorků dat
- výhodou normálního rozložení je dostupnost statistických testů, které mají větší sílu testu („power“) než hodnocení založená na pořadových charakteristikách
- na normální rozložení lze převést i jinak rozložené znaky tzv. transformací dat, nicméně to se nemusí vždy podařit a zdaleka ne vždy je to pro data přínosné
Výhodou práce s normálním rozložením tedy je jistá pohodlnost (vzorce jsou dány, testy všeobecně přijaty) a potom výkon (tzv. parametrické testy mají větší sílu, tedy schopnost rozpoznat neplatnost hypotézy; anebo jinými slovy - pro průkaz daného rozdílu je zde třeba o něco menší N než u neparametrických testů).
Neparametrické testy jsou naopak robustní, to je jejich hlavní výhoda. Tedy v drtivé většině nepředpokládají existenci nejen normálního, ale žádného typu rozložení. To je velmi praktické, neboť je tedy lze použít téměř vždy, odpadají starosti s odlehlými hodnotami, asymetrií rozložení apod.
K Vašemu dotazu, zda při volbě mediánu již nemohu použít např. t-test, zkusím zjednodušeně napsat v bodech toto:
- Neumožňuje–li rozložení výpočet aritmetického průměru nebo není-li normální (ani symetrické), pak musíme použít neparametrické statistiky. Z toho vyplývá, že následně i neparametrické testy, aplikace např. t-testu by byla velmi chybná.
- U normálního typu rozložení ovšem můžeme použít jak aritmetický průměr, tak i medián a další neparametrické statistiky. Taková data mohu sumarizovat všemi typy testů, parametrickými i neparametrickými. Logikou věci ale je, že pokud již máme normální rozložení a pracujeme s průměrem, pak je výhodnější parametrické testování, neboť má větší sílu testu. Povinné to ale není.
- A naopak: jsou –li data prezentována mediánem a percentily, je logické zpracovávat je pořadovými, tedy tzv. neparametrickými testy. U rozložení jiných než normálních je to nutné.
- Absolutně žádná volba pak není u ordinálních stupnic a skóre. Zde není aritmetický průměr ani definován a tedy jedinou možností jsou pořadové statistiky a neparametrické testy.
Vše tedy záleží na typu rozložení dat a dané situaci. Umím si představit prezentaci normálně rozložených dat pomocí mediánu, kvantilů i průměru a následně použití t-testu. I výběrové normální rozložení má svůj empirický 10% a 90% kvantil, své minimum a maximum a někdy je dobré je uvést pro představu o rozsahu primárních dat bez ohledu na metodiku dalšího testování. Jiným příkladem může být prezentace primárních asymetrických dat pomocí mediánu a řekněme 10% - 90% kvantilů, následně normalizující transformace a statistické testování pomocí t-testu na transformovaných datech.
Ladislav Dušek
Štítky
Dětská neurologie Neurochirurgie Neurologie
Článek Obrna lícního nervuČlánek Webové okénko
Článek vyšel v časopiseČeská a slovenská neurologie a neurochirurgie
Nejčtenější tento týden
2007 Číslo 6- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Zolpidem může mít širší spektrum účinků, než jsme se doposud domnívali, a mnohdy i překvapivé
- Nejčastější nežádoucí účinky venlafaxinu během terapie odeznívají
- Jak souvisí postcovidový syndrom s poškozením mozku?
-
Všechny články tohoto čísla
- Obrna lícního nervu
- Elektrofyziologické vyšetření lícního nervu
- Protilátky proti glykokonjugátům v diagnostice autoimunitních neuropatií
- 5 let činnosti Národní referenční laboratoře lidských prionových onemocnění při Oddělení patologie a molekulární medicíny FTNsP: naše zkušenosti a přehled literatury
- Klinický pohled na výpočetní tomografii u akutní ischemie mozku
- Ultrazvukové hodnocení substantia nigra u pacientů s parkinsonskými syndromy
- Porovnání výsledků vyšetření zrakových evokovaných potenciálů u pacientů s roztroušenou sklerózou a neuroboreliózou
- Kognitívne evokované potenciály – vlna P300 u pacientov so sclerosis multiplex: vzťah k forme ochorenia, somatickému postihnutiu a kvalite života
- Relabující-remitující roztroušená skleróza a oligoklonální pruhy v průběhu léčby modifikující průběh choroby
- Mozková žilní trombóza u uživatelek hormonální antikoncepce
- Úspěšné použití jediné otázky pro screening syndromu neklidných nohou v České republice
- Závisí vývoj dysfunkce mikce u roztroušené sklerózy na typu neurologické léčby?
- Poruchy polykání ve vztahu k vertebrogenním dysfunkcím
- Centrální neurocytom: kazuistika a přehled literatury
- Gelastické záchvaty u hypotalamického hamartomu: kazuistika
- Dercumova choroba (lipomatosis dolorosa) – zriedkavo diagnostikované ochorenie: kazuistika
- Poúrazová porucha čichu: kazuistiky
- K šedesátinám doc. MUDr. Martina Bojara, CSc.
-
Směruje použití mediánu ke statistickým neparametrickým postupům zpracování dat?
Okénko statistika – Analýza dat v neurologii – III.
Nebojme se mediánu a robustních statistik - Webové okénko
-
Analýza dat v neurologii VI.
Přesnost, spolehlivost a reprodukovatelnost měření u diskrétních dat
- Česká a slovenská neurologie a neurochirurgie
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Obrna lícního nervu
- Poruchy polykání ve vztahu k vertebrogenním dysfunkcím
- Protilátky proti glykokonjugátům v diagnostice autoimunitních neuropatií
- Dercumova choroba (lipomatosis dolorosa) – zriedkavo diagnostikované ochorenie: kazuistika
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání