#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

EFFECT OF LOW, MEDIUM AND HIGH MOLECULAR WEIGHT HYALURONIC ACID ON HUMAN DENTAL PULP STEM CELLS


Authors: J. Schmidt 1;  N. Pilbauerová 1;  T. Soukup 2;  J. Suchánek 1
Authors place of work: Stomatologická klinika, Lékařská fakulta Univerzity Karlovy a Fakultní nemocnice, Hradec Králové 1;  Ústav histologie a embryologie, Lékařská fakulta Univerzity Karlovy, Hradec Králové 2
Published in the journal: Česká stomatologie / Praktické zubní lékařství, ročník 120, 2020, 3, s. 67-77
Category: Původní práce

Summary

Introduction: Dental pulp stem cells (DPSCs) express naturally high positivity for surface receptor glycoprotein CD 44 which is involved in the induction of odontoblast mineralization with hyaluronic acid (HA) being its major ligand. The aim of this experiment was to assess the effect of HA in low (LMW-HA), medium (MMW-HA) and high (HMW-HA) molecular weights on the phenotypic profile, proliferation activity and differentiation potential of human DPSCs.

Methods: The experiment was conducted in vitro on two lines of human DPSCs from different donors (third molar – male, 25 years and first premolar – male, 9 years). These lines were cultured in standard medium and from the second passage also in three experimental culture media containing 0.1% HA in three molecular weights: LMW-HA (116 kDa), MMW-HA (540 kDa) and HMW-HA (1500 kDa). The phenotypic analysis was performed in the seventh passage using a Vi-Cell XR flow cytometer, viability was evaluated by the Vi-Cell Analyzer in the seventh passage and proliferation activity measured by the Z2 Counter Analyzer in every passage. Osteo- and chondro- differentiation were inducted by commercially supplied cultivation media and demonstrated by histological staining with alcian blue and alizarin red.

Results: DPSCs used in our experiment expressed phenotype typical for human DPSCs (high positivity for CD 13, CD 29, CD 44, CD 90 and OCT 3/4), they were able to exceed Hayflick limit and differentiate in the osteogenic as well as the chondrogenic extracellular matrix. During the experiment, DPSCs line 1 cultivated in control medium / medium 1 (116 kDa HA) / medium 2 (540 kDa HA) / medium 3 (1500 kDa HA) achieved in this order in total 14.1/15.3/15.4/14.8 population doublings. The median of doubling time with the minimal and maximal values in the same order was 31.6 (29.2; 36.8) / 29.6 (28.5; 30.6) / 30.3 (26.7; 31.3) / 30.5 (29.7; 33.8) hours. The viability of the DPSCs obtained from the seventh passage was in the same order 92.3/93.1/91.8/92.6%. DPSC line 2 cultivated in control medium / medium 1 (116 kDa HA) / medium 2 (540 kDa HA) / medium 3 (1500 kDa HA) achieved in this order in total 16.7/17.2/16.7/16.8 population doublings. The median of doubling time with the minimal and maximal values in the same order was 28.9 (24.5; 35.2) / 27.4 (24.5; 32.6) / 28.3 (24.0; 38.4) / 27.1 (25.3; 33.9) hours. The viability of the DPSCs obtained from the seventh passage was in the same order 80.1/82.5/81.8/80.9%.

Conclusion: We verified that DPSCs in the presence of hyaluronic acid at a concentration of 0.1% and molecular weights of 116, 540 and 1500 kDa survive, proliferate and maintain the ability to differentiate in mature cellular elements. We also verified the original assumption that the low molecular weight form of hyaluronic acid has a different impact on the DPSCs‘ phenotype than the high molecular weight form of hyaluronic acid.

Keywords:

Stem cells – dental pulp – hyaluronic acid – scaffold


Zdroje

1. Goldberg M, Hirata A. The dental pulp: composition, properties and functions. JSM Dent. 2017; 5(1): 1079.

2. Dahiya P, Kamal R. Hyaluronic acid: a boon in periodontal therapy. N Am J Med Sci. 2013; 5(5): 309–315.

3. Bauer C, Niculescu-Morzsa E, Jeyakumar V, Kern D, Spath SS, Nehrer S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. J Inflamm (Lond). 2016; 13(1): 31.

4. Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol. 2014; 5: 101.

5. Albano GD, Bonanno A, Cavalieri L, Ingrassia E, Di Sano C, Siena L, Riccobono L, Gagliardo R, Profita M. Effect of high, medium, and low molecular weight hyaluronan on inflammation and oxidative stress in an in vitro model of human nasal epithelial cells. Mediators Inflamm. 2016; 2016: 8727289.

6. Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015; 16(1): 321.

7. Rahimnejad M, Derakhshanfar S, Zhong W. Biomaterials and tissue engineering for scar management in wound care. Burns Trauma. 2017; 5(1): 4.

8. Furnari ML, Termini L, Traverso G, Barrale S, Bonaccorso MR, Damiani G, Piparo CL, Collura M. Nebulized hypertonic saline containing hyaluronic acid improves tolerability in patients with cystic fibrosis and lung disease compared with nebulized hypertonic saline alone: a prospective, randomized, double-blind, controlled study. Ther Adv Respir Dis. 2012; 6(6): 315–322.

9. Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015; 2015: 563818.

10. Lauer ME, Dweik RA, Garantziotis S, Aronica MA. The rise and fall of hyaluronan in respiratory diseases. Int J Cell Biol. 2015; 2015: 712507.

11. Naor D. Interaction between hyaluronic acid and its receptors (CD44, RHAMM) regulates the activity of inflammation and cancer. J Frontiers Immunol. 2016; 7: 39.

12. Gritsenko P, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol. 2012; 226(2): 185–199.

13. Wu M, Cao M, He Y, Liu Y, Yang C, Du Y, Wang W, Gao F. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J. 2015; 29(4): 1290–1298.

14. Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V. Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis. 2013; 4(10): e819.

15. Lennon FE, Mirzapoiazova T, Mambetsariev N, Mambetsariev B, Salgia R, Singleton PA. Transactivation of the receptor-tyrosine kinase ephrin receptor A2 is required for the low molecular weight hyaluronan-mediated angiogenesis that is implicated in tumor progression. J Biol Chem. 2014; 289(35): 24043–24058.

16. Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015; 23(7–8): 605–618.

17. Maharjan AS, Pilling D, Gomer RH. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS One. 2011; 6(10): e26078.

18. Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015; 1(7): 481–493.

19. Umemura N, Ohkoshi E, Tajima M,Kikuchi H, Katayama T, Sakagami H.Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44. Stem Cell Res Ther. 2016; 7(1): 135.

20. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering – A review. Carbohyd Polym. 2013; 92(2): 1262–1279.

21. Chircov C, Grumezescu AM, Bejenaru LE. Hyaluronic acid-based scaffolds for tissue engineering. Rom J Morphol Embryol. 2018; 59(1): 71–76.

22. Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017; 8: 2041731417726464.

23. Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J. Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009; 153(1).

24. Kabir R, Gupta M, Aggarwal A, Sharma D, Sarin A, Kola MZ. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review. Niger J Surg. 2014; 20(1): 1–8.

25. Carnevale G, Riccio M, Pisciotta A, Beretti F, Maraldi T, Zavatti M, Cavallini GM, La Sala GB, Ferrari A, De Pol AJD, Disease L. In vitro differentiation into insulin-producing β-cells of stem cells isolated from human amniotic fluid and dental pulp. 2013; 45(8): 669–676.

26. Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, Kerkis A, Cerruti H, Kerkis I. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010; 51(3): 1408–1414.

27. Omi M, Hata M, Nakamura N, Miyabe M, Ozawa S, Nukada H, Tsukamoto M, Sango K, Himeno T, Kamiya H, Nakamura J, Takebe J, Matsubara T, Naruse K. Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation. Stem Cell Res Ther. 2017; 8(1): 279.

28. Martínez-Sarrà E, Montori S, Gil-Recio C, Núñez-Toldrà R, Costamagna D, Rotini A, Atari M, Luttun A, Sampaolesi M. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. J Stem Cell Res. 2017; 8(1): 175.

29. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012; 122(1): 80–90.

30. Chamieh F, Collignon AM, Coyac BR, Lesieur J, Ribes S, Sadoine J, Llorens A, Nicoletti A, Letourneur D, Colombier ML. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. J Sci Reports. 2016; 6: 38814.

31. Manimaran K, Sharma R, Sankaranarayanan S, Perumal SM. Regeneration of mandibular ameloblastoma defect with the help of autologous dental pulp stem cells and buccal pad of fat stromal vascular fraction. Ann Maxillofac Surg. 2016; 6(1): 97–100.

32. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. J Cell Transplant. 2011; 20(7): 1003–1013.

33. Amghar-Maach S, Gay-Escoda C, Sanchez-Garces MA. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic review. J Clin Exp Dent. 2019; 11(4): e373–e81.

34. Itoh Y, Sasaki JI, Hashimoto M, Katata C, Hayashi M, Imazato S. Pulp regeneration by 3-dimensional dental pulp stem cell constructs. J Dent Res. 2018; 97(10): 1137–1143.

35. Zhu X, Zhang C, Huang GT, Cheung GS, Dissanayaka WL, Zhu W. Transplantation of dental pulp stem cells and platelet-rich plasma for pulp regeneration. J Endod. 2012; 38(12): 1604–1609.

36. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015; 21(3–4): 550–563.

37. Ito K, Yamada Y, Nakamura S, Ueda M. Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants. 2011; 26(5).

38. Palanisamy S, Kurkalli BGS. Interaction of dental pulp stem cells in bone regeneration on titanium implant. An in vitro study. J Osseointegration. 2019; 11(4).

39. Guzalinuer A, Muhetaer H, Wu H, Paerhati A. Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant. Chinese J Stomatol. 2018; 53(4): 259–263.

40. Suchánek J, Ivančaková RK, Mottl R, Browne KZ, Pilneyová KC, Pilbauerová N, Schmidt J, Suchánková Kleplová T. Hyaluronic acid-based medical device for treatment of alveolar osteitis – clinical study. Int J Environ Res Public Health. 2019; 16(19): 3698.

41. Park JK, Yeom J, Oh EJ, Reddy M, Kim JY, Cho DW, Lim HP, Kim NS, Park SW, Shin HI, Yang DJ, Park KB, Hahn SK. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Acta Biomater. 2009; 5(9): 3394–3403.

42. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering – A review. J Carbohydrate Polymers. 2013; 92(2): 1262–1279.

43. Prato GP, Rotundo R, Magnani C, Soranzo C, Muzzi L, Cairo F. An autologous cell hyaluronic acid graft technique for gingival augmentation: a case series. J Periodontol. 2003; 74(2): 262–267.

44. Çankaya ZT, Gürbüz S, Bakirarar B, Kurtiş B. Evaluation of the effect of hyaluronic acid application on the vascularization of free gingival graft for both donor and recipient sites with laser doppler flowmetry: A randomized, examiner-blinded, controlled clinical Trial. Int J Periodont Restorat Dent. 2020; 40(2).

45. Sahayata V, Bhavsar N, Brahmbhatt N. An evaluation of 0.2% hyaluronic acid gel (Gengigel®) in the treatment of gingivitis: a clinical & microbiological study. Oral Health Dent Manag. 2014; 13(3): 779–785.

46. Matsiko A, Levingstone TJ, O'Brien FJ, Gleeson JP. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater. 2012; 11: 41–52.

47. Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2009; 15(2): 243–254.

48. Chen KL, Huang YY, Lung J, Yeh YY, Yuan K. CD44 is involved in mineralization of dental pulp cells. J Endodont. 2013; (3): 351–356.

49. Pan GJ, Chang ZY, Scholer HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002; 12(5–6): 321–329.

50. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K, Lloyd RV. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 2011; 31(6): 2283–2290.

51. Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensébé L, Bourin P. CD 146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med. 2014; 18(1): 104–114.

Štítky
Chirurgie maxilofaciální Ortodoncie Stomatologie

Článek vyšel v časopise

Česká stomatologie / Praktické zubní lékařství

Číslo 3

2020 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Svět praktické medicíny 1/2024 (znalostní test z časopisu)

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#