#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Kognitivní toxicita indukovaná radioterapií v éře precizní onkologie – od patofyziologie ke strategiím omezení toxicity


Autoři: C. C. Mirestean 1,2;  R. I. Iancu 3,4;  D. T. Iancu 3,5
Působiště autorů: University of Medicine and Pharmacy of Craiova, Craiova, Romania 1;  Railways Clinical Hospital, Iasi, Romania 2;  “Gr. T. Popa” University of Medicine and Pharmacy, Iasi, Romania 3;  “St. Spiridon” Emergency Hospital, Iasi, Romania 4;  Regional Institute of Oncology, Iasi, Romania 5
Vyšlo v časopise: Cesk Slov Neurol N 2023; 86(5): 322-326
Kategorie: Přehledný referát
doi: https://doi.org/10.48095/cccsnn2023322

Souhrn

Radioterapie je jedným ze základních složek léčby pacientů s intrakraniálními metastázami. Součástí nechirurgické léčby mozkových metastáz jsou celomozkové ozáření (whole brain radiotherapy –⁠ WBRT) a také stereotaktická radiochirurgie. V éře pokroku onkologické léčby s implikacemi pro dlouhodobé přežití pacientů je diskutovaným tématem toxicita těchto léčebných postupů, u které nemůžeme přehlédnout kognitivní poruchy. Mechanizmů, na jejichž základě kognitivní poruchy vznikají, je několik a jsou stále předmětem výzkumu. Zaměřujeme se na patofyziologické elementy, které se podílí na kognitivních poruchách, a na strategie, jakými jsou hipokampus šetřící (hippocampal avoidance; HA) WBRT pro kandidáty na cílenou léčbu s různými histologickými typy nádorů, která přechází hematoencefalickou bariéru. I když je léčba HA-WBRT plus memantinem jakožto standard stále předmětem diskuzí, v případech mnohočetných mozkových metastáz nebo metastáz, u kterých není vhodná cílená radioterapie, a u pacientů s očekávaným přežitím > 4 měsíce je nutné aplikovat strategii pro prevence poruch kognitivních funkcí. V budoucnu musí být do analýz a studií zařazeny nové studie, které zhodnotí kognitivní funkce u pacientů s dlouhodobým přežitím, ale také další faktory, jako je počet a objem mozkových metastáz, jejich intrakraniální a extrakraniální lokalizace a efekt moderních onkologických terapií.

Klíčová slova:

demence – kognitivní porucha – mozkové metastazy – celomozkové ozáření – šetření hippokampu – memantin


Zdroje

1. DeAngelis LM, Seiferheld W, Schold SC et al. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. J Clin Oncol 2002; 20 (24): 4643–4648. doi: 10.1200/JCO.2002.11.013.

2. Wilke C, Grosshans D, Duman J et al. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 2018; 20 (5): 597–607. doi: 10.1093/neuonc/nox195.

3. Nabors LB, Portnow J, Ammirati M et al. NCCN Guidelines Insights: Central Nervous System Cancers, Version 1.2017. J Natl Compr Canc Netw 2017; 15 (11): 1331–1345. doi: 10.6004/jnccn.2017.0166.

4. Lehrer EJ, Jones BM, Dickstein DR et al. The cognitive effects of radiotherapy for brain metastases. Front Oncol 2022; 12 : 893264. doi: 10.3389/fonc.2022.893264.

5. Monje ML, Mizumatsu S, Fike JR et al. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8 (9): 955–962. doi: 10.1038/nm749.

6. Rola R, Raber J, Rizk A et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188 (2): 316–330. doi: 10.1016/j.expneurol.2004.05.005.

7. Tökés T, Varga G, Garab D et al. Peripheral inflammatory activation after hippocampus irradiation in the rat. Int J Radiat Biol 2014; 90 (1): 1–6. doi: 10.3109/09553002. 2013.836617.

8. Ding X, Zhang HB, Qiu H et al. Cranial irradiation induces cognitive decline associated with altered dendritic spine morphology in the young rat hippocampus. Childs Nerv Syst 2022; 38 (10): 1867–1875. doi: 10.1007/s00381-022-05646-w.

9. Greene-Schloesser D, Robbins ME. Radiation-induced cognitive impairment –⁠ from bench to bedside. Neuro Oncol 2012; 14 (Suppl 4): iv37–44. doi: 10.1093/neuonc/nos196.

10. Bai H, Han B. The effectiveness of erlotinib against brain metastases in non-small cell lung cancer patients. Am J Clin Oncol 2013; 36 (2): 110–115. doi: 10.1097/COC. 0b013e3182438c91.

11. Hotta K, Kiura K, Ueoka H et al. Effect of gefitinib (“Iressa”, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung Cancer 2004; 46 (2): 255–261. doi: 10.1016/j.lungcan.2004.04.036.

12. Fabi A, Alesini D, Valle E et al. T-DM1 and brain metastases: clinical outcome in HER2-positive metastatic breast cancer. Breast 2018; 41 : 137–143. doi: 10.1016/ j.breast.2018.07.004.

13. Cetin B, Benekli M, Oksuzoglu B et al. Lapatinib plus capecitabine for brain metastases in patients with human epidermal growth factor receptor 2-positive advanced breast cancer: a review of the Anatolian Society of Medical Oncology (ASMO) experience. Onkologie 2012; 35 (12): 740–745. doi: 10.1159/000345040.

14. Cihan YB. Lapatinib? or radiotherapy? in cranial metastasis of breast cancer. Eur J Breast Health 2019; 15 (3): 205–206. doi: 10.5152/ejbh.2019.4874.

15. Ippolito E, Silipigni S, Matteucci P et al. Radiotherapy for HER 2 positive brain metastases: urgent need for a paradigm shift. Cancers 2022; 14 (6): 1514. doi: 10.3390/cancers14061514.

16. Kowalczyk L, Bartsch R, Singer CF et al. Adverse events of trastuzumab emtansine (T-DM1) in the treatment of HER2-positive breast cancer patients. Breast Care 2017; 12 (6): 401–408. doi: 10.1159/000480492.

17. Davies MA, Saiag P, Robert C et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 2017; 18 (7): 863–873. doi: 10.1016/S1470-2045 (17) 30429-1.

18. Bauer TM, Felip E, Solomon BJ et al. Clinical management of adverse events associated with lorlatinib. Oncologist 2019; 24 (8): 1103–1110. doi: 10.1634/theoncologist.2018-0380.

19. Welsh JW, Komaki R, Amini A et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small--cell lung cancer. J Clin Oncol 2013; 31 (7): 895–902. doi: 10.1200/JCO.2011.40.1174.

20. Chen G, Feng J, Zhou C et al. Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase III, randomised, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). Ann Oncol 2013; 24 (6): 1615–1622. doi: 10.1093/annonc/mdt012.

21. Pesce GA, Klingbiel D, Ribi K et al. Outcome, quality of life and cognitive function of patients with brain metastases from non-small cell lung cancer treated with whole brain radiotherapy combined with gefitinib or temozolomide. A randomised phase II trial of the Swiss Group for Clinical Cancer Research (SAKK 70/03). Eur J Cancer 2012; 48 (3): 377–384. doi: 10.1016/j.ejca.2011.10.016.

22. Institute for Quality and Efficiency in Health Care (IQWiG, Germany). Dacomitinib (non-small-cell lung cancer) –⁠ benefit assessment according to §35a Social Code Book V. [online]. Available from: https: //www.iqwig.de/download/a19-39_dacomitinib_extract-of-dossier-assessment_v1-0.pdf.

23. Sekine A, Satoh H, Ikeda S et al. Rapid effect of osimertinib re-challenge on brain metastases developing during salvage cytotoxic chemotherapy after osimertinib treatment failure: a case report. Mol Clin Oncol 2019; 10 (4): 451–453. doi: 10.3892/mco.2019.1818.

24. Chun YS, Kim MY, Lee SY et al. MEK1/2 inhibition rescues neurodegeneration by TFEB-mediated activation of autophagic lysosomal function in a model of Alzheimer’s disease. Mol Psychiatry 2022; 27 (11): 4770–4780. doi: 10.1038/s41380-022-01713-5.

25. Schadendorf D, Amonkar MM, Stroyakovskiy D et al. Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur J Cancer 2015; 51 (7): 833–840. doi: 10.1016/j.ejca.2015.03.004.

26. Huang Y, Li Q, Tian H et al. MEK inhibitor trametinib attenuates neuroinflammation and cognitive deficits following traumatic brain injury in mice. Am J Transl Res 2020; 12 (10): 6351–6365.

27. Bartsch R, Berghoff AS, Furtner J et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat Med 2022; 28 (9): 1840–1847. doi: 10.1038/s41591-022-01935-8.

28. Gupta T, Basu A, Master Z et al. Planning and delivery of whole brain radiation therapy with simultaneous integrated boost to brain metastases and synchronous limited-field thoracic radiotherapy using helical tomotherapy: a preliminary experience. Technol Cancer Res Treat 2009; 8 (1): 15–22. doi: 10.1177/153303460900800103.

29. Gondi V, Hermann BP, Mehta MP et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 2012; 83 (4): e487–493. doi: 10.1016/j.ijrobp.2011.10.021.

30. Brown PD, Pugh S, Laack NN et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 2013; 15 (10): 1429–1437. doi: 10.1093/neuonc/not114.

31. Dye NB, Gondi V, Mehta MP. Strategies for preservation of memory function in patients with brain metastases. Chin Clin Oncol 2015; 4 (2): 24. doi: 10.3978/j.issn.2304-3865.2015.05.05.

32. Gondi V, Tolakanahalli R, Mehta MP et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78 (4): 1244–1252. doi: 10.1016/j.ijrobp.2010.01.039.

33. Goda JS, Dutta D, Krishna U et al. Hippocampal radiotherapy dose constraints for predicting long-term neurocognitive outcomes: mature data from a prospective trial in young patients with brain tumors. Neuro Oncol 2020; 22 (11): 1677–1685. doi: 10.1093/neuonc/noaa076.

34. Grosu AL, Frings L, Bentsalo I et al. Whole-brain irradiation with hippocampal sparing and dose escalation on metastases: neurocognitive testing and biological imaging (HIPPORAD) –⁠ a phase II prospective randomized multicenter trial (NOA-14, ARO 2015-3, DKTK-ROG). BMC Cancer 2020; 20 (1): 532. doi: 10.1186/s12885-020-07011-z.

35. Levy A, Dhermain F, Botticella A et al. Hippocampal avoidance whole-brain radiotherapy (WBRT) versus WBRT in patients with brain metastases: were hippocampi the only difference? J Clin Oncol 2020; 38 (29): 3453–3454. doi: 10.1200/JCO.20.00548.

36. Brown PD, Gondi V, Pugh S et al. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III trial NRG oncology CC001. J Clin Oncol 2020; 38 (10): 1019–1029. doi: 10.1200/JCO.19.02767.

37. Andratschke N, Belderbos J, Mayinger M et al. Hippocampal avoidance and memantine for whole-brain radiotherapy: long-term follow-up warranted. J Clin Oncol 2020; 38 (29): 3454–3455. doi: 10.1200/JCO.20.00747.

38. Brown PD, Jaeckle K, Ballman KV et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 2016; 316 (4): 401–409. doi: 10.1001/jama.2016.9839.

39. Kuntz L, Noel G. Repeated irradiation of brain metastases under stereotactic conditions: a review of the literature. Cancer Radiother 2021; 25 (4): 390–399. doi: 10.1016/j.canrad.2020.08.050.

40. Bunevicius A, Lavezzo K, Shabo L et al. Quality-of-life trajectories after stereotactic radiosurgery for brain metastases. J Neurosurg 2020; 134 (6): 1791–1799. doi: 10.3171/2020.4.JNS20788.

41. Kuntz L, Le Fèvre C, Jarnet D et al. Changes in the characteristics of patients treated for brain metastases with repeat stereotactic radiotherapy (SRT): a retrospective study of 184 patients. Radiat Oncol 2023; 18 (1): 21. doi: 10.1186/s13014-023-02200-z.

Štítky
Dětská neurologie Neurochirurgie Neurologie

Článek vyšel v časopise

Česká a slovenská neurologie a neurochirurgie

Číslo 5

2023 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#