Tumour markers in prostate cancer. A new horizon?


Authors: V. Vik 1;  P. Šácha 2,3;  R. Zachoval 1
Authors‘ workplace: Urologické oddělení, Fakultní Thomayerova nemocnice, Praha Primář: doc. MUDr. Roman Zachoval, Ph. D. 1;  Ústav organické chemie a biochemie AV ČR, Praha Ředitel: RNDr. Zdeněk Havlas, DrSc. 2;  Katedra biochemie Přírodovědecké fakulty UK, Hlavova 030, Praha Vedoucí: Doc. RNDr. Marie Stiborová, DrSc. 3
Published in: Prakt. Lék. 2008; 88(12): 706-709
Category: Various Specialization

Overview

PSA has been the most commonly used prostate cancer marker since the end of the 1980s. Its introduction into clinical practice has changed prostate cancer diagnosis and treatment dramatically. The major disadvantage with PSA is its organ specificity and not cancer specificity. The major research task in recent years has been an attempt to define a biomarker that is produced specifically by the cancer cell only. The first clinical experience with EPCA-2 was published last year. It is clear that its specificity and sensitivity are better than for PSA. Nevertheless, the research has been ongoing and new molecules which are very interesting from a medical point of view have been discovered. One of which is PSMA (GCP II) and major progress towards understanding the function of this enzyme has been made in the past ten years. Currently, it can be stated that GCP II (PSMA) is a highly specific tumour marker for prostate cancer, which correlates with differentiation of the tumour and has prognostic potential. Furthermore, there is evidence supporting correlations between PSMA expression and angiogenesis in most solid tumours and neurological defects after ischemic attacks in the central nervous system.

Key words:
PSA (prostate specific antigen), EPCA-2 (early prostate cancer antigen), PSMA (prostate-specific membrane antigen), GCPII (glutamate carboxypeptidase II), prostate cancer.


Sources

1. Birtle, A.J., Freeman, A., Masters, J.R.W. et al. Tumour markers for managing men who present with metastatic prostate cancer and serum prostate-specific antigen levels < 10ng/mL. BJU Int., 2005, 96, p. 303-307.

2. Conway, R.E., Petrovic, N., Li, Z. et al. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol. Cell. Biol., 2006, 26, p. 5310-5324.

3. Horoszewicz, J.S., Kawinski, E., Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987, 7, p. 927-936.

4. Leman, E.S., Cannon, G.W., Trock, B.J. et al. EPCA-2: highly specific serum marker for prostate cancer. Urology 2007, 69, p. 714-720.

5. Luszczki, J.J., Mohamed, M., Czuczwar, S.J. 2-phosphonometyl-pentanedioic acid (glutamate carboxypeptidase II inhibitor) increases threshold for electroconvulsions and enhances the antiseizure action of valproate against maximal electroshock-induced seizures in mice. Eur. J. Pharmacol. 2006, 531, p. 66-73.

6. Perner, S., Hofer, D.M., Kim, R. et al. Prostate-specific membrane antigene expression as a predictor of prostate cancer progression. Hum. Pathol. 2007, 38, p. 696-701.

7. Robinson, M.B., Blakely, R.D., Couto, R., Coyle, J.T. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterisation of a novel N-acetylated alphalinked acidic dipeptidase activity from rat brain. J. Biol. Chem., 1987, 262, p. 14498-14506.

8. Yao, V., Bacich, D.J. Prostate-specific membrane antigen (PSMA) expression gives prostate cancor cells a growth advantage in a physiologically relevant folate environment in vitro. Prostate 2006, 66, p. 867-875.

Labels
General practitioner for children and adolescents General practitioner for adults
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account