#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metformin: the overlap of diabetology and oncology


Authors: M. Anděl;  P. Škrha;  J. Trnka
Authors‘ workplace: Centrum výzkumu diabetu, metabolizmu a výživy Ústavu výživy a II. interní kliniky 3. lékařské fakulty UK a FN Královské Vinohrady Praha, přednosta prof. MU Dr. Michal Anděl, CSc.
Published in: Vnitř Lék 2013; 59(8): 738-742
Category:

Overview

Type 2 diabetes moderately increases predisposition for manifestation of tumor disease. Both drugs stimulating insulin secretion (insulin secretagogues) and insulin injection therapy also moderately increases risk of tumor manifestation (OR approx 1.3). According to some reports pyoglitazon therapy could be of increased risk of bladder cancer. On the other hand, hunderds of study on isolated cells, experimental animal models and retrospective studies in patients have shown preventive effect of metformin therapy on manifestation tumors of pancreas, breast, colorectum, liver, endometrium and ovary. More over, the prognosis of diabetic cancer patients on metformin therapy seems be better, than in diabetics without metformin treatment. These data are promising for future use of metformin for prevention and therapy of some malignant tumors.

Key words:
type 2 diabetes mellitus –  cancer –  antidiabetic therapy –  metformin


Sources

1. Algire C, Zakhikani M, Blouin MJ et al. Metformin attenuates the stimulator effect of a high energy diet in vivo LLC1 carcinoma growth. Endocr Relat Cancer 2008; 15: 833– 839.

2. Algire C, Moiseeva O, Deschénes‑ Simard X et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 2012; 5: 536– 543.

3. Anisimov VN, Egormin PA, Bershtein LM et al. Metformin decelarets aging and development of Maďary tumors in HER/ 2 neu transgenic mice. Bull Exp Biol Med 2005; 139: 721– 723.

4. Arai M, Uchiba M, Komura H et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor‑ 1 expression in human monocytes in vitro. J Pharmacol Exp Ther 2010; 334: 206– 213.

5. Azoulay L, Yin H, Filton KB et al. The use of pioglitazone and the risk of bladder cancer in poeple with type 2 diabetes: nested case control study. BMJ 2012; 344: e3645.

6. Ben Sahra I, Laurent K, Loubat A et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576– 3586.

7. Bodmer M, Becker C, Meier C et al. Use of metformin and the risk of ovarian cancer: a case control analysis. Gynecol Oncol 2001; 123: 200– 204.

8. Bodmer M, Becker C, Meier C et al. Use of metofrmin is not associated with a decreased risk of colorectal cancer. A case‑ control analysis. Cancer Epidemiol Biomarkers Prev 2012; 21: 280– 286.

9. Butler AE, Campbell‑ Thompson M, Gurlo T et al. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humus with increase exocrine pancreas dysplasia and the potential for glucagon‑ producing neuroendocrine tumors. Diabetes 2013; 62: 2595– 2604.

10. Carling D, Thornton C, Woods A et al. AMP‑activated protein kinase: new regulation, new roles? Biochem J 2012; 445: 11– 27.

11. Clarke PR, Hardie DG. Regulation of HMG‑ CoA reductase: identification of the site phosphorylated by the AMP‑activated protein kinase in vitro and in intact rat liver. EMBO J 1990; 9: 2439– 2441.

12. Coughlin SS, Calte EE, Teras LR et al. Diabetes mellitus as a predator of cancer mortality in a large kohort of US adults. Am J Epidemiol 2004; 159: 1160– 1167.

13. Col NF, Ochs L, Springmann V et al. Metformin and breast cancer risk: a meta‑analysis and critical literature review. Breast Cancer Res Treat 2012; 135: 639– 646.

14. Currie CJ, Poole CD, Gale EA. The influence of glucose‑lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009; 52: 1766– 1777.

15. Colhoun HM. SDRN Epiemiology Group. Use of insulin glargine and cancer incidence in Scottland. Diabetologia 2009; 52: 1755– 1765.

16. El‑ Mir MY, Nogueira V, Fontaine E et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275: 223– 228.

17. Foretz M, Hebrard S, Leclerc J et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/ AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355– 2369.

18. Gotlieb WH, Saumet J, Beauchamp MC et al. In vitro metformin anti‑neoplastic activity in epithelian ovarian cancer. Gynecol Oncol 2008; 110: 246– 250.

19. Gwinn DM, Shackelford DB, Egan DF et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214– 226.

20. Hemminki A, Markie D, Tomlinson I et al. A serine/ threonine kinase gene defective in Peutz‑ Jeghers syndrome. Nature 1998; 391: 184– 187.

21. Hemkens LG, Growen U, Bender R et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 2009; 52: 1732– 1744.

22. Imamura K, Ogura T, Kishimoto A et al. Cell cycle regulation via p53 phosphorylation by a 5‘– AMP activated protein kinase activator, 5– aminoimidazole‑  4– carboxamide‑ 1‑beta‑D‑ ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2001; 287: 562– 567.

23. Inoki K, Zhu T, Guan KL. TSC2 mediates cel­lular energy response to control cell growth and survival. Cell 2003; 115: 577– 590.

24. Isakovic A, Harhaji L, Stevanovic D et al. Dual natiglioma action of metformin: cycle cell arest and mitochondria‑ dependent apoptosis. Cell Mol Life Sci 2007; 64: 1290– 1302.

25. Jager S, Handschin C, St‑ Pierre J et al. AMP‑activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC‑ 1{alpha}. Proc Natl Acad Sci USA 2007; 104: 12017– 12022.

26. Jonasson JM, Ljung M, Talbäck M et al. Insulin glargine use and short term incidence of malignancies –  a population based follow‑up study in Sweden. Diabetologia 2009; 52: 1742– 1754.

27. Jorgensen SB, Nielsen JN, Birk JB et al. The alpha2– 5’AMP‑activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 2004; 53: 3074– 3081.

28. Kawaguchi T, Osatomi K, Yamashita H et al. Mechanism for fatty acid “sparing” effect on glucose‑induced transcription: regulation of carbohydrate‑ responsive element‑binding protein by AMP‑activated protein kinase. J Biol Chem 2002; 277: 3829– 3835.

29. Koo SH, Flechner L, Qi L et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109– 1114.

30. Leclerc I, Lenzner C, Gourdon L et al. Hepatocyte nuclear factor‑ 4a involved in type 1 maturity‑ onset diabetes of the young is a novel target of AMP‑activated protein kinase. Diabetes 2001; 50: 1515– 1521.

31. Lehman DM, Lorenzo C, Hernandez J et al. Statin use as a moderator of metformin effect on risk for prostate cancer among type 2 diabetic patients. Diabetes Care 2012; 35: 1002– 1007.

32. Liao H, Zhou Q, Gu Y et al. Luteinizin hormone facilitates angiogenesis in ovarian epithleian tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep 2012; 27: 1873– 1878.

33. Liang J, Shao SH, Hennessy B et al. The energy sensing LKB1– AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218– 224.

34. Marsin AS, Bertrand L, Rider MH et al. Phosphorylation and activation of heart PFK‑ 2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10: 1247– 1255.

35. Marsin AS, Bouzin C, Bertrand L et al. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP‑activated protein kinase and inducible 6– phosphofructo‑ 2– kinase. J Biol Chem 2002; 277: 30778– 30783.

36. Munday MR, Campbell DG, Carling D et al. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl‑ CoA carboxylase. Eur J Biochem 1988; 175: 331– 338.

37. Nies AT, Hofmann U, Resch C et al. Proton pump inhibitors inhibit metformin uptake by organic cation transporters. PLoS One 2011; e22163.

38. Pehmoller C, Treebak JT, Birk JB et al. Genetic disruption of AMPK signaling abolishes both contraction‑  and insulin‑stimulated TBC1D1 phosphorylation and 14– 3– 3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2009; 297: E665– E675.

39. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of begin­ning. Cancer Discov 2012; 2: 778– 790.

40. Romero IL, McCormick A, McEwen KA et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival and chemosensitivity. Obstet Gynecol 2012; 119: 61– 67.

41. Rušavý Z, Lacigová S, Kvapil M. Co nám přinesla největší studie v historii diabetologie? Vnitř Lék 2013; 59: 160– 164.

42. Shank JJ, Yang K, Ghannan J et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol 2012; 127: 390– 397.

43. Smith U, Gale EA. Does insulin therapy influence risk of cancer? Diabetologia 2009; 52: 1699– 1708.

44. Schneider MB, Matsuzaki H, Haorah J et al. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 2001; 120: 1263– 1270.

45. Tang X, Yang L, He Z et al. Insulin glargine and cancer risk in patients with diabetes: a meta‑analysis. PLoS One 2012; 7: e51814.

46. Tomimoto A, Endo H, Sugiyama M et al. Metformin suppress intestinal polyp growth in AcpMin/ + mice. Cancer Sci 2008; 99: 2136– 2141.

47. Wideroff L, Gridley G, Mellemkjaer L et al. Cancer incidence in population –  based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 1997; 89: 1360– 1365.

48. Wienecke R, König A, DeClue JE. Identification of tuberin, the tuberous sclerosis‑ 2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 1995; 270: 16409– 16414.

49. Winder WW, Wilson HA, Hardie DG et al. Phosphorylation of rat muscle acetyl‑ CoA carboxylase by AMP‑activated protein kinase and cAMP‑ dependent protein kinase. J Appl Physiol 1997; 82: 219– 225.

50. Zakikani M, Dowling R, Fantus IG et al. Metformin is an AMP kinase‑ dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66: 10269– 10273.

51. Zheng D, MacLean PS, Pohnert SC et al. Regulation of muscle GLUT‑ 4 transcription by AMP‑activated protein kinase. J Appl Physiol 2001; 91: 1073– 1083.

52. Zhou G, Myers R, Li Y et al. Role of AMP‑activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167– 1174.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 8

2013 Issue 8

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#