#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Development of molecular biology methods and their applications in haemato(onco)logy in the last 25 years


Authors: K. Machová Poláková 1;  N. Čuřík 1;  H. Votavová 1;  J. Trka 2
Authors‘ workplace: Ústav hematologie a krevní transfuze, Praha 1;  CLIP – Childhood Leukaemia Investigation Prague a Klinika dětské hematologie a onkologie 2. LF UK a FN Motol, Praha 2
Published in: Transfuze Hematol. dnes,25, 2019, No. 1, p. 34-42.
Category: Review/Educational Papers

Overview

The field of molecular biology aims to explain the fundamentals governing living processes at molecular level by identifying mechanisms that produce such processes. Central discoveries describing the innate systems of living nature helped derive molecular technologies that work in vitro. The application of these methods has not only improved understanding of molecular biology but has also helped to improve prevention, diagnosis and treatment of human diseases.

This review focuses on the key technologies of molecular genetics and their development over the past 25 years. The application of these methods in the diagnosis and monitoring of haemato(oncolo)gical patients that have helped significantly to improve prognosis and treatment approaches, is described.

Keywords:

polymerase chain reaction (PCR) – next generation sequencing (NGS) – microarray – minimal residual disease (MRD)


Sources

1. Watson JD, Crick FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953;171:737–738.

2. Kornberg A, Lezhman I, Simms E. Polydesoxyribonucleotide synthesis by enzymes from Escherichia coli. Fed Proc 1956b;291–292.

3. Kornberg A, Lehman IR, Bessman MJ, Simms ES. Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta 1956a;21:197–198.

4. Atkinson MR, Deutscher MP, Kornberg A, Russell AF, Moffatt JG. Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2‘,3‘-dideoxyribonucleotide. Biochemistry 1969;8:4897–4904.

5. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74:5463–5467.

6. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–1354.

7. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986;51:263–273.

8. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 1993;11:1026–1030.

9. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–511.

10. Bullinger L, Döhner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350:1605–1616.

11. James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434:1144–1148.

12. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66–72.

13. Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008;451:335–339.

14. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009;6:377–382.

15. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010;115:453–474.

16. Hindson CM, Chevillet JR, Briggs HA, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013;10:1003–1005.

17. Klamová H, Žižková H, Burda P, et al. Současné trendy v léčbě a diagnostice chronické myeloidní leukemie. Transfuze Hematol dnes 2017;23(Supl 2):34–42.

18. Soverini S, De Benedittis C, Machova Polakova K, et al. Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain. Blood 2013;122:1634–1648.

19. Machova Polakova K, Kulvait V, Benesova A, et al. Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase. J Cancer Res Clin Oncol 2015;141:887–899.

20. Musilova M, Razga F, Jurcek T, et al. BCR-ABL1 kinase domain mutational analysis of CD34+ stem/progenitor cells in newly diagnosed CML patients by next-generation sequencing. Am J Hematol 2014;89:1016–1017.

21. Soverini S, De Benedittis C, Papayannidis C, et al. Clinical impact of low-burden BCR-ABL1 mutations detectable by amplicon deep sequencing in Philadelphia-positive acute lymphoblastic leukemia patients. Leukemia 2016;30:1615–1619.

22. Čulen M, Kosařová Z, Ježíšková I, et al. Sekvenování nové generace u akutní myeloidní leukemie: nový pohled na patogenezi a vývoj leukemických klonů. Transfuze Hematol dnes 2017;23:185–191.

23. Maffucci P, Filion CA, Boisson B, et al. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol 2016;7:220.

24. Sanchez R, Morgades M, Ayala R, et al. Targeted RNA-Seq identify a subset of adolescent and adult patients with acute lymphoblastic leukemia with BCR-ABL1-like characteristics. Blood 2017;130:2710.

25. Yang F, Press RD. Next-generation sequencing multi-gene mutation panels in myeloid malignancies. The Hematologist 2016;13:6–7.

26. Kotrova M, Muzikova K, Mejstrikova E, et al. Next generation amplicon sequencing of immunoglobulin heavy chain gene rearrangaments for minimal residual disease (MRD) stratification in childhood acute lymphoblastic leukemia (ALL): a comparison with classical qPCR-based technique. Blood 2014;124:2395.

27. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–537.

28. Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2011;19:313–319.

29. Garzon R, Volinia S, Papaioannou D, et al. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 2014;111:18679–18684.

30. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101:4944–4951.

31. Flotho C, Coustan-Smith E, Pei D, et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 2006;108:1050–1057.

32. Hofmann WK, de Vos S, Elashoff D, et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002;359:481–486.

33. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–764.

34. Pallisgaard N, Hokland P, Riishøj DC, Pedersen B, Jørgensen P. Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 1998;92:574–588.

35. Andersson A, Höglund M, Johansson B, et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia 2001;15:1293–1300.

36. Salto-Tellez M, Shelat SG, Benoit B, et al. Multiplex RT-PCR for the detection of leukemia-associated translocations: validation and application to routine molecular diagnostic practice. J Mol Diagn 2003;5:231–236.

37. Gocke CD, Mason J, Brusca L, et al. Risk-based classification of leukemia by cytogenetic and multiplex molecular methods: results from a multicenter validation study. Blood Cancer J 2012;2:e78.

38. Corradi B, Fazio G, Palmi C, Rossi V, Biondi A, Cazzaniga G. Efficient detection of leukemia-related fusion transcripts by multiplex PCR applied on a microelectronic platform. Leukemia 2008;22:294–302.

39. Pettersson Cheng A, Viskari A, Odén U, et al. Improved MPL mutation screening with multiplex PCR and capillary electrophoresis. Br J Haematol 2017;179:838–840.

40. Park N, Vassiliou G. Design and application of multiplex PCR seq for the detection of somatic mutations associated with myeloid malignancies. Methods Mol Biol 2017;1633:87–99.

41. Goldman JM, Gale RP. What does MRD in leukemia really mean? Leukemia 2014;28:1131.

42. Van der Velden VHJ, Hochhaus A, Cazzaniga G., Szczepanski T, Gabert J, van Dongen JJM. Detection of minimal resicual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003;17:1013–1034.

43. Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med 1982;307:1231–1236.

44. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14), chromosome translocation. Science 1994;224:965–977.

45. Zemanová K, Žižková H, Jurček T, et al. Chronická myeloidní leukemie – standardizace molekulárního monitorování hladiny transkriptů BCR-ABL1 v České republice. Transfuze Hematol dnes 2016;22:56–64.

46. Hrabovský Š, Folber F, Šálek C, Horáček JM, Mayer J, Doubek M. Pokroky v léčbě akutní lymfoblastické leukémie dospělých. Transfuze Hematol dnes 2015;21:84–91.

47. Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med 2016;374:422–433.

48. Kreuzer KA, Saborowski A, Lupberger J, et al. Flurescent 5‘-exonuclease assay for the absolute quantification of Wilms‘ tumour gene (WT1) mRNA: implications for monitoring human leukameias. Br J Haematol 2001;114:313–318.

49. Vogelstein B and Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999;96:9236–9241.

50. Morley AA. Digital PCR: A brief history. Biomol Detection Quantif 2014;1:1–2.

51. Simmonds P, Balfe P, Peutherer JF, Ludlam CA, Bishop JO, Brown AJ. Human immunodeficiency virus-infected individuals conatin provirus in small nubmer of peripheral mononuclar cells and at low copy numbers. J Virol 1990;64:864–872.

52. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for the polymerase chain reaction by use of limited dilution. Biotechniques 1992;13:444–449.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 1

2019 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#