#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Chronic lymphocytic leukaemia – contemporary application of modern prognostic and predictive markers in diagnostics


Authors: Š. Pospíšilová 1,2;  M. Jarošová 1,2;  M. Doubek 1,2
Authors‘ workplace: Interní hematologická a onkologická klinika LF MU a FN Brno 1;  Centrum molekulární medicíny, CEITEC, Masarykova univerzita, Brno 2
Published in: Transfuze Hematol. dnes,25, 2019, No. 1, p. 66-71.
Category: Review/Educational Papers

Overview

Insights into the biology and pathogenesis of chronic lymphocytic leukaemia (CLL) have dramatically increased over the past 25 years. Treatment of this disease has also dramatically changed. This is an example of one of the most striking advances in the entire field of oncological haematology. CLL has a very heterogeneous clinical outcome depending on many factors. Prognostic markers thus play an important role in disease management and assist in the selection of the best treatment option. The key prognostic and predictive factors influencing treatment decisions are TP53 gene aberrations, especially in the era of novel therapies. The introduction of high-throughput genomic approaches has led to the identification of novel genetic abnormalities that could contribute to improved risk stratification of CLL patients and also enable tracking of leukemic clone(s) evolution.

Keywords:

chronic lymphocytic leukaemia – prognostic factors – predictive factors – Cytogenetics – TP53 – IGHV


Sources

1. Rai KR, Sawitsky A, Cronkite EP, et al. Clinical staging of chronic lymphocytic leukemia. Blood 1975;46:219–234.

2. Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981;48:198–206.

3. Lens D, Dyer MJ, Garcia-Marco JM, et al. p53 abnormalities in CLL are associated with excess of prolymphocytes and poor prognosis. Br J Haematol 1997;99(4):848–857.

4. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343:1910–1916.

5. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018;21;131(25):2745–2760.

6. Delgado J, Doubek M, Baumann T, et al. Chronic lymphocytic leukemia: A prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI. Am J Hematol 2017;92(4):375–380.

7. Doubek M, Špaček M, Pospíšilová Š, et al. Doporučení pro diagnostiku a léčbu chronické lymfocytární leukemie (CLL) – 2018. Transfuze Hematol dnes 2018;24(3):208–221.

8. Pflug N, Bahlo J, Shanafelt TD, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 2014;124:49–62.

9. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytes leukemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 2016;17:779–790.

10. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015;526(7574):525–530.

11. Puente XS, Beà S, Valdés-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526(7574):519–524.

12. Rodríguez-Vicente AE, Bikos V, Hernández-Sánchez M, et al. Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons. Oncotarget 2017;8(41):71234–71248.

13. Navrkalová V, Kantorová B, Jarošová M, Pospíšilová Š. Molekulární prognostické markery CLL a jejich klinický význam. Klin Onkol 2015;28(S3):3S6–S15.

14. Pratt G, Thomas P, Marden N, et al. Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival. Leuk Lymphoma 2016;57(10):2342–2350.

15. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94(6):1848–1854.

16. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94(6):1840–1847.

17. Ghia P, Stamatopoulos K, Belessi C, et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007;21:1–3.

18. Langerak AW, Davi F, Ghia P, Hadzidimitriou A, Murray F, Potter KN, et al. Immunoglobulin sequence analysis and prognostication in CLL: guidelines from the ERIC review board for reliable interpretation of problematic cases. Leukemia 2011;25(6):979–84.

19. Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia 2017;31(7):1477–1481.

20. Sutton LA, Hadzidimitriou A, Baliakas P, et al.; European Research Initiative on CLL (ERIC). Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica 2017;102(6):968–971.

21. Plevova K, Francova HS, Burckova K, et al. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2014;99(2):329–338.

22. Brazdilova K, Plevova K, Skuhrova Francova H, et al. Multiple productive IGH rearrangements denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia 2018;32(1):234–236.

23. Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012;119(19):4467–4475.

24. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol 2014;1(2):e74–e84.

25. Sutton LA, Young E, Baliakas P, et al. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica 2016;101(8):959–967.

26. Zenz T, Häbe S, Denzel T, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114(13):2589–2597. 

27. Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 2012;26(7):1458–1461.

28. Malcikova J, Tausch E, Rossi D, et al. ERIC Recommendations for TP53 mutation analysis in chronic lymphocytic leukemia – update on methodological approaches and results interpretation. Leukemia 2018;32(5):1070–1080.

29. Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014;123:2139–2147.

30. Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015;29(4):877–885.

31. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016;127(17):2122–2130.

32. Skowronska A, Parker A, Ahmed G, et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J Clin Oncol 2012;30(36):4524–4532.

33. Dicker F, Schnittger S, Haferlach T, et al. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006;108(9):3152–3160.

34. Haferlach C, Dicker F, Schnittger S, et al. Comprehensivegenetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping. Leukemia 2007;21(12):2442–2451.

35. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations with other biomarkers and clinical impact; a retrospective study on behalf of Eric. Haematologica 2017;102(s2):170.

36. Puiggros A, Collado R, Calasanz MJ, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletion. Oncotarget 2017;8:54297–54303.

37. Thompson PA, O’Brien SM, Wierda WG, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer 2015;121:3612–3621.

38. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol 2012;159:82–87.

39. Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: A systematic reappraisal of classic cytogenetic data. Am J Hematol 2014;89:249–255.

40. Hernández-Sánchez M, Kotaskova J, Rodríguez AE, et al. CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase. Leukemia; publikováno electronicky 12. září 2018; DOI: 10.1038/s41375-018-0255-1.

41. Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011;44(1):47–52.

42. Oscier D, Rose-Zerilli MJ, Winkelmann N, et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013;121:468–475.

43. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012;119(2):521–529.

44. Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013;121(8):1403–1412.

45. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015;29(2):329–336.

46. Rawstron AC, Kreuzer KA, Soosapilla A, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) harmonisation project. Cytometry B Clin Cytom 2018;94(1):121–128.

47. Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow-cytometry and high-throughput sequencing for minimal residual disease (MRD) detection in chronic lymphocytic leukemia (CLL): An European research initiative on CLL (ERIC) study. Leukemia 2015;30(4):929–936.

48. Poppová L, Plevová K, Pospíšilová Š. Epigenetické změny jako nový nástroj pro prognostickou stratifikaci pacientů s chronickou lymfocytární leukemií. Transfuze Hematol dnes 2017;23(4):210–214.

49. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152(4):714–726.

50. Pospisilova S, Sutton LA, Malcikova J, et al. Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go? Haematologica 2016;101(3):263–265.

51. Tom N, Pardy F, Kotašková J, Plevová K, Pospíšilová Š: Základní bioinformatické pojmy a postupy využívané pro analýzu DNA pomocí sekvenování nové generace. Transfuze Hematol dnes 2018;24(3):174–181.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 1

2019 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#