#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Heterogeneity of childhood diabetes and its therapeutic implications


Authors: Zdeněk Šumník;  Štěpánka Průhová;  Ondřej Cinek
Authors‘ workplace: Pediatrická klinika 2. LF UK a FN v Motole, Praha
Published in: Vnitř Lék 2016; 62(Suppl 4): 129-135
Category: Reviews

Overview

The prevalence of diabetes in Czech children is 1 : 500–1 000. Its incidence rose about threefold over the past 25 years. Type 1 diabetes is the prevailing form of diabetes in childhood, but also monogenic forms are frequently diagnosed. The occurrence of type 2 diabetes is still marginal in Czech children, with a relative proportion of less than 1 % of all diabetic children. Etiological diagnosis is the basic prerequisite of an effective diabetes treatment. In this review we present novel aspects on etiology and therapy of diabetes diagnosed in childhood and adolescence.

Keywords:
diabetes mellitus – etiopathogenesis – children – therapy


Sources

1. Ashcroft FM, Rorsman P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 2013; 9(11): 660–669. Dostupné z DOI: <http://dx.doi.org/10.1038/nrendo.2013.166>.

2. Stanik J, Gasperikova D, Paskova M et al. Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. J Clin Endocrinol Metab 2007; 92(4): 1276–1282.

3. Gloyn AL, Pearson ER, Antcliff JF et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004; 350(18): 1838–1849. Erratum in N Engl J Med 2004; 351(14): 1470.

4. Rozenkova K, Malikova J, Nessa A et al. High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism. J Clin Endocrinol Metab 2015; 100(12): E1540-E1549. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2015–2763>.

5. Lebl J, Roženková K, Průhová Š. Vrozený hyperinzulinismus: Když beta-buňka ztratí sebekontrolu. Vnitř Lék 2016; 62(11 Suppl 4): 4S72–4S76.

6. Rubio-Cabezas O, Hattersley AT, Njølstad PR et al. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2014; 15(Suppl 20): S47-S64. Dostupné z DOI: <http://dx.doi.org/10.1111/pedi.12192>.

7. Thurber BW, Carmody D, Tadie EC et al. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia 2015; 58(7): 1430–1435. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–015–3593–9>.

8. Sumnik Z, Kolouskova S, Wales JK et al. Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome). Diabet Med 2007; 24(10): 1176–1178.

9. Zwaveling-Soonawala N, Hagebeuk EE, Slingerland AS et al. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia 2011; 54(2): 469–471. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–010–1981–8>.

10. Peña-Almazan S. Successful transition to sulfonylurea in neonatal diabetes, developmental delay, and seizures (DEND syndrome) due to R50P KCNJ11 mutation. Diabetes Res Clin Pract 2015; 108(1): e18-e20. Dostupné z DOI: <http://dx.doi.org/10.1016/j.diabres.2014.12.010>.

11. Cinek O, Lánská V, Kolousková S et al. Type 1 diabetes mellitus in Czech children diagnosed in 1990–1997: a significant increase in incidence and male predominance in the age group 0–4 years. Diabet Med 2000; 17(1): 64–69.

12. Cinek O, Sumnik Z, Vavrinec J. Continuing increase in incidence of childhood-onset type 1 diabetes in the Czech Republic 1990–2001. Eur J Pediatr 2003; 162(6): 428–429.

13. Cinek O, Kulich M, Sumnik Z. The incidence of type 1 diabetes in young Czech children stopped rising. Pediatr Diabetes 2012; 13(7): 559–563. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1399–5448.2012.00858.x>.

14. Kaprio J, Tuomilehto J, Koskenvuo M et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992; 35(11): 1060–1067.

15. Thomson G, Robinson WP, Kuhner MK et al. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet 1988; 43(6): 799–816.

16. Cinek O, Drevínek P, Sumník Z et al. Association of insulin gene variants with type 1 diabetes mellitus in Czech population. Čas Lék Česk 2004; 143(5): 318–322.

17. Cinek O, Hradsky O, Ahmedov G et al. No independent role of the -1123 G>C and+2740 A>G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res Clin Pract 2007; 76(2): 297–303.

18. Fourlanos S, Varney MD, Tait BD et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2008; 31(8): 1546–1549. Dostupné z DOI: <http://dx.doi.org/10.2337/dc08–0239>.

19. Awa WL, Boehm BO, Kapellen T et al. HLA-DR genotypes influence age at disease onset in children and juveniles with type 1 diabetes mellitus. Eur J Endocrinol 2010; 163(1): 97–104. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-09–0921>.

20. Lipponen K, Gombos Z, Kiviniemi M et al. Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk-associated class II genotypes. Diabetes 2010; 59(12): 3253–3256. Dostupné z DOI: <http://dx.doi.org/10.2337/db10–0167>.

21. Kawabata Y, Ikegami H, Awata T et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia 2009; 52(12): 2513–2521. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–009–1539–9>.

22. Sumnik Z, Cinek O, Bratanic N et al. Risk of celiac disease in children with type 1 diabetes is modified by positivity for HLA-DQB1*02-DQA1*05 and TNF -308A. Diabetes Care 2006; 29(4): 858–863.

23. Sumnik Z, Drevínek P, Snajderová M et al. HLA-DQ polymorphisms modify the risk of thyroid autoimmunity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2003; 16(6): 851–858.

24. Patterson CC, Gyürüs E, Rosenbauer J et al. Seasonal variation in month of diagnosis in children with type 1 diabetes registered in 23 European centers during 1989–2008: little short-term influence of sunshine hours or average temperature. Pediatr Diabetes 2015; 16(8): 573–580. Dostupné z DOI: <http://dx.doi.org/10.1111/pedi.12227>.

25. Lewy H, Hampe CS, Kordonouri O et al. Seasonality of month of birth differs between type 1 diabetes patients with pronounced beta-cell autoimmunity and individuals with lesser or no beta-cell autoimmunity. Pediatr Diabetes 2008; 9(1): 46–52.

26. Cinek O. Epidemiology of childhood type 1 diabetes mellitus: lessons from Central and Eastern European data. Horm Res Paediatr 2011; 76(Suppl 1): S52-S56. Dostupné z DOI: <http://dx.doi.org/10.1159/000329168>.

27. Petruzelkova L, Dusatkova P, Cinek O et al. Substantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programme. Diabet Med 2015 Dec 7. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.13043>. [Epub ahead of print].

28. Urbanová J, Rypáčková B, Kučera P et al. Should the negativity for islet cell autoantibodies be used in a prescreening for genetic testing in maturity-onset diabetes of the young? The case of autoimmunity-associated destruction of pancreatic B-cells in a family of HNF1A-MODY subjects. Int Arch Allergy Immunol 2013; 161(3): 279–284. Dostupné z DOI: <http://dx.doi.org/10.1159/000346906>.

29. Pruhova S, Dusatkova P, Neumann D et al. Two cases of diabetic ketoacidosis in HNF1A-MODY linked to severe dehydration: is it time to change the diagnostic criteria for MODY? Diabetes Care 2013; 36(9): 2573–2574. Dostupné z DOI: <http://dx.doi.org/10.2337/dc13–0058>.

30. Zeitler P, Fu J, Tandon N et al. ISPAD Clinical Practice Consensus Guidelines 2014. Type 2 diabetes in the child and adolescent. Pediatr Diabetes 2014; 15(Suppl 20): S26-S46. Dostupné z DOI: <http://dx.doi.org/10.1111/pedi.12179>.

31. Cihakova D, Trebusak K, Heino M et al. Novel AIRE mutations and P450 cytochrome autoantibodies in Central and Eastern European patients with APECED. Hum Mutat 2001; 18(3): 225–232.

32. Gallo V, Giardino G, Capalbo D et al. Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model. Expert Rev Clin Immunol 2013; 9(1): 43–51. Dostupné z DOI: <http://dx.doi.org/10.1586/eci.12.88>.

33. Huang W, Connor E, Rosa TD et al. Although DR3-DQB1*0201 may be associated with multiple component diseases of the autoimmune polyglandular syndromes, the human leukocyte antigen DR4-DQB1*0302 haplotype is implicated only in beta-cell autoimmunity. J Clin Endocrinol Metab 1996; 81(7): 2559–2563.

34. Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann NY Acad Sci 2016; Feb 25. Dostupné z DOI: <http://dx.doi.org/10.1111/nyas.13011I>.

35. Schubert D, Bode C, Kenefeck R et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 2014; 20(12): 1410–1416. Dostupné z DOI: <http://dx.doi.org/10.1038/nm.3746>.

36. Kuehn HS, Ouyang W, Lo B et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014; 345(6204): 1623–1627. Dostupné z DOI: <http://dx.doi.org/10.1126/science.1255904>.

37. Lee S, Moon JS, Lee CR et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol 2016; 137(1): 327–330. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jaci.2015.08.036>.

38. Lo B, Zhang K, Lu W et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015; 349(6246): 436–440. Dostupné z DOI: <http://dx.doi.org/10.1126/science.aaa1663>.

39. Forbes LR, Milner J, Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol 2016; 23(1): 23–27. Dostupné z DOI: <http://dx.doi.org/10.1097/MOH.0000000000000206>.

40. Flanagan SE, Haapaniemi E, Russell MA et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 2014; 46(8): 812–814. Dostupné z DOI: <http://dx.doi.org/10.1038/ng.3040>.

41. Toubiana J, Okada S, Hiller J et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016; 127(25): 3154–3164. Dostupné z DOI: <http://dx.doi.org/10.1182/blood-2015–11–679902>.

42. Pickova K, Venhacova J, Skvor J et al. National childhood diabetes register: disease onset, diabetes control and therapeutic data in the Czech Republic (abstrakt). Diabetologia 2015; 58(Suppl 1): S168-S169.

43. Pozzilli P, Guglielmi C. Double diabetes: a mixture of type 1 and type 2 diabetes in youth. Endocr Dev 2009; 14: 151–166. Dostupné z DOI: <http://dx.doi.org/10.1159/000207484>.

44. Stanik J, Dusatkova P, Cinek O et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 2014; 57(3): 480–484. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–013–3119–2>.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue Suppl 4

2016 Issue Suppl 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#