Enzyme replacement therapy in lysosomal storage diseases

Authors: J. Kulhánek;  V. Malinová;  T. Honzík;  M. Magner
Authors‘ workplace: Klinika dětského a dorostového lékařství 1. LF UK a VFN, Praha, přednosta prof. MUDr. J. Zeman, DrSc.
Published in: Čes-slov Pediat 2015; 70 (4): 224-231.
Category: Review


Lysosomal storage diseases (LSDs) form a group of more than 70 rare inherited metabolic diseases, usually caused by a malfunction of some of the lysosomal enzymes. The aim of this review is to introduce enzyme replacement therapy (ERT) which gained an indispensable role in the therapy of LSDs. ERT is based upon replacement of the defective enzyme by a recombinant protein administred in a 2–4 hour infusion once a week or once a fortnight. This therapy is currently available for seven LSDs: Gaucher disease, Fabry disease, Pompe disease and mucopolysaccharidoses I, II, IVA and VI. ERT significantly affects visceral manifestations of the diseases (hepatomegaly, splenomegaly, vital lung capacity, muscle weakness, anaemia, gastrointestinal disorders etc.), yet it is not effective in treating the central nervous system (CNS) involvement and only a small effect is observed in treating disease manifestations in bones, cartilage and heart valves. An immune reaction with clinical presentation of an allergic reaction and therapy effectiveness decrease can occur with a portion of patients. Other modalities for LSDs therapy are concisely mentioned: haematopoietic stem cell transplantation, substrate reduction therapy, chaperons and gene therapy.

ERT slows the progression of the disease and markedly alters its natural course, improves quality of life and prolongs patients’ lifespan. The limitations include insufficient effect in some tissues, possible allergic reactions and great financial demands. An essential presumption for effectiveness and success of ERT is its early initiation following quick diagnosis of the disease.

Key words:
lysosomal storage diseases, enzyme replacement therapy


1. Beck M. Therapy for lysosomal storage disorders. IUBMB Life 2010; 62 (1): 33–40.

2. te Vruchte D, Wallom KL, Platt FM. Measuring relative lysosomal volume for monitoring lysosomal storage diseases. Methods Cell Biol 2015; 126: 331–347.

3. Ballabio A, Giesermann V. Lysosomal disorders: From storage to cellular damage. Biochim Biophys Acta 2009; 1793 (4): 684–696.

4. Muenzer J. Early initiation of enzyme replacement therapy for mucopolysaccharidoses. Mol Genet Metab 2014; 111 (2): 63–72.

5. Hollak CEM, Wijburg FA. Treatment of lysosomal storage disorders: successes and challanges. J Inherit Metab Dis 2014; 37 (4): 587–598.

6. Poupětová H, Ledvinová J, Berná L, et al. The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations. J Inherit Metab Dis 2010; 33 (4): 387–396.

7. Malinova V, Honzík T. Lysosomální onemocnění – současné možnosti diagnostiky a terapie. Pediatr praxi 2013; 14 (2): 99–103.

8. Malinová V, Ješina P, Linhart A, et al. Lyzosomální onemocnění – současné možnosti diagnostiky a terapie. Postgrad Med 2014; 16 (příloha č. 2): 51–63.

9. Ješina P, Magner M, Poupětová H, et al. Mukopolysacharidóza I – klinické projevy u 24 dětí z České republiky a Slovenska. Čes-slov Pediat 2011; 66 (4): 6–11.

10. Magner M, Buganová M, Asfaw B, et al. Klinické projevy a výsledky laboratorních vyšetření u čtyř pacientů s alfa-manosidózou. Čes-slov Pediat 2008; 63 (12): 677–682.

11. Magner M, Hrubá E., Poupětová H, et al. Klinická manifestace Hunterovy nemoci u 22 českých pacientů. Čes-slov Pediat 2014; 69 (S1): 56.

12. de Duve C, Pressman BC, Gianetto R, et al. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 1955; 60 (4): 604–617.

13. Coutinho MF, Matos L, Alves S. From bedside to cell biology: a century of history on lysosomal dysfunction. Gene 2015; 555 (1): 50–58.

14. Batzios SP, Zafeiriou DI, Papakonstantinou E. Extracellular matrix components: An intricate network of possible biomarkers for lysosomal storage disorders? FEBS Lett 2013; 587 (7): 1258–1267.

15. Neufeld EF. Enzyme replacement therapy – a brief history. In: Mehta A, Beck M, Sunder-Plassmann G (eds). Fabry Disease: Perspectives from 5 Years of FOS. Oxford: Oxford Pharmagenesis, 2006: Chapter 10.

16. Ghosh P, Dahms NM, Korngeld S. Mannose 6-phosphate receptors: new twist in the tale. Nat Rev Mol Cell Biol 2003; 4 (3): 202–212.

17. Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; 324 (21): 1464–1470.

18. Mapes CA, Anderson RL, Sweeley CC, et al. Enzyme replacement in Fabry’s disease, an inborn error of metabolism. Science 1970; 169 (3949): 987–989.

19. Grabowski GA, Barton NW, Pastores G, et al. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 1995; 122 (1): 33–39.

20. Ioannou YA, Bishop DF, Desnick RJ. Overexpression of human α-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 1992; 119 (5): 1137–1150.

21. Kakkis ED, Matynia A, Jonas AJ, et al. Overexpression of the human lysosomal enzyme α-l-iduronidase in Chinese hamster ovary cells. Protein Expr Purif 1994; 5 (3): 225–232

22. Van Hove JL, Yang HW, Wu JY, et al. High-level production of recombinant human lysosomal acid α-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with Pompe disease. Proc Natl Acad Sci USA 1996; 93 (1): 65–70.

23. Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 2014; 112 (1): 1–8.

24. He X, Galpin JD, Tropak MB, et al. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology 2012; 22 (4): 492–503.

25. Martiniuk F, Reggi S, Tchou-Wong KM, et al. Production of a functional human acid maltase in tobacco seeds: biochemical analysis, uptake by human GSDII cells, and in vivo studies in GAA knockout mice. Appl Biochem Biotechnol 2013; 171 (4): 916–926.

26. Augustine EF, Mink JW. Enzyme replacement in neuronal storage disorders in the pediatric population. Curr Treat Options Neurol 2013; 15 (5): 634–651.

27. Park JS, Kim HG, Shin JH, et al. Effect of enzyme replacement therapy in late onset Pompe disease: open pilot study of 48 weeks follow-up. Neurol Sci 2015; 36 (4): 559–560.

28. Anderson LJ, Henley W, Wyatt KM, et al. Effectiveness of enzyme replacement therapy in adults with late-onset Pompe disease: results from the NCS-LSD cohort study. J Inherit Metab Dis 2014; 37 (6): 945––952.

29. Anderson LJ, Wyatt KM, Henley W, et al. Long-term effectiveness of enzyme replacement therapy in Fabry disease: results from the NCS--LSD cohort study. J Inherit Metab Dis 2014; 37 (6): 969–978.

30. Ratko TA, Marbella A, Godfrey S, et al. Enzyme-Replacement Therapies for Lysosomal Storage Diseases Technical Brief. No. 12. Rockville, MD: Agency for Healthcare Research and Quality, 2013.

31. Wyatt K, Henley W, Anderson LJ, et al. The effectiveness and cost-effectiveness of enzyme and substrate replacement therapies: a longitudinal cohort study of people with lysosomal storage disorders. Health Technol Assess 2012; 16 (39): 1–543.

32. Baldo G, Guiglani R, Matte U. Lysosomal enzymes may cross the blood-brain-barrier by pinocytosis: implications for enzyme replacement therapy. Med Hypotheses 2014; 82 (4): 478–480.

33. Ortolano S, Viéitez I, Navarro C, et al. Treatment of lysosomal storage diseases: recent patents and future strategies. Recent Pat Endocr Metab Immune Drug Discov 2014; 8 (1): 9–25.

34. Braunlin E, Rosenfeld H, Kampmann C, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: long-term cardiac effects of galsulfase (Naglazyme®) therapy. J Inherit Metab Dis 2013; 36 (2): 385–394.

35. Hsu J, Northrup L, Bhowmick T, et al. Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders. Nanomedicine 2012; 8 (5): 731–739.

36. Banugaria SG, Prater SN, Ng YK, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med 2011; 13 (8): 729–736.

37. Baruteau J, Broomfield A, Crook V, et al. Successful desensitisation in a patient with CRIM-positive infantile-onset Pompe disease. JIMD Rep 2014; 12: 99–102.

38. Jurecka A, Malinova V, Tylki-Szymańska A. Effect of rapid cessation of enzyme replacement therapy: a report of 5 more cases. Mol Genet Metab 2014; 111 (2): 212–213.

39. Jurecka A, Żuberuber Z, Opoka-Winiarska V, et al. Effect of rapid cessation of enzyme replacement therapy: a report of 5 cases and a review of the literature. Mol Genet Metab 2012; 107 (3): 508–512.

40. Noh H, Lee JI. Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Pharm Ther 2014; 39 (3): 215–224.

41. Mistry PK, Lukina E, Ben Turkia H, et al. Effect of oral eliglustat on splenomegaly in patients with Gaucher disease type 1: the ENGAGE randomized clinical trial. JAMA 2015; 695–706.

42. Santos ML, Raskin S, Telles DS, et al. Treatment of a child diagno-sed with Niemann-Pick disease type C with miglustat: a case report in Brazil. J Inherit Metab Dis 2008; 31 (S2): S357–361.

43. Wang YJ, Di XJ, Mu TW. Using pharmacological chaperones to restore proteostasis. Pharmacol Res 2014; 83: 3–9.

44. Chiricozzi E, Niemir N, Aureli M, et al. Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts. Mol Neurobiol 2014; 50 (1): 159–167.

45. McIntyre C, Derrick-Roberts AL, Byers S, et al. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med 2014; 16 (11–12): 374–387.

46. Tomatsu S, Alméciga-Díaz CJ, Barbosa H, et al. Therapies of mucopolysaccharidosis IVA (Morquio A syndrome). Expert Opin Orphan Drugs 2013; 1 (10): 805–818.

47. Laraway S, Breen C, Mercer J, et al. Does early use of enzyme replacement therapy alter the natural history of mucopolysaccharidosis I? Experience in three siblings. Mol Genet Metab 2013; 109 (3): 315–316.

48. Tajima G, Sakura N, Kosuga M, et al. Effects of idursulfase enzyme replacement therapy for mucopolysaccharidosis type II when started in early infancy: comparison in two siblings. Mol Genet Metab 2013; 108 (3): 172–177.

49. Tylki-Szymańska A, Jurecka A, Zuber Z, et al. Enzyme replacement therapy for mucopolysaccharidosis II from 3 months of age: a 3-year follow-up. Acta Paediatr 2012; 101 (1): e42–47.

50. Porto C, Ferrara MC, Meli M, et al. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine. Mol Ther 2012; 20 (12): 2201–2211.

Neonatology Paediatrics General practitioner for children and adolescents
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account