Individualized Approach to Treating Multiple Sclerosis

Authors: J. Piťha
Authors‘ workplace: MS Centrum, Neurologické oddělení, Krajská zdravotní, a. s. – Nemocnice Teplice o. z.
Published in: Cesk Slov Neurol N 2016; 79/112(5): 528-533
Category: Review Article


This review is concerned with individualized treatment of relapsing-remitting multiple sclerosis. It is important to continuously monitor the clinical course and MRI in order to further predict prognosis and to select the optimal therapy. Pharmacogenetics focus on determining biomarkers so that early non-responders as well as possible adverse effects can be detected. The principles of pharmacovigilance are essential for good clinical practice. Personalized approach to treatment may enable identification of the most suitable treatments that improve health-related quality of life and pharmacoeconomic impact indicators.

Key words:
multiple sclerosis – personalized medicine – pharmacogenetics

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


1. Gibson, W. Can personalized medicine survive? Can Farm Physician 1971; 17 (8): 29–34.

2. Česká společnost pro personalizovanou medicínu a lékařské algoritmy. [online]. Dostupné z URL:

3. Steele FR. Personalized medicine: something old, something new. Person Med 2009; 6 (1): 1–5.

4. Palička V. Personalizovaná medicína a její (možné) postavení v kardiologii. Interv Akut Kardiol 2012; 11 (1): 6–8.

5. Presicision Medicine. U.S. Food and Drug Administration. [online]. Available from URL:

6. Annibali V, Ristori G, Cannoni S, et al. Multiple sclerosis: pharmacogenomics and personalised drug treatment. Neurol Sci 2006; 5 (Suppl): S347–9.

7. Derfuss T. Personalized medicine in multiple sclerosis: hope or reality? BMC Med 2012; 10: 116. doi: 10.1186/1741-7015-10-116.

8. Gajofatto A, Calabrese M, Benedetti MD, et al. Clinical, MRI, and CSF markers of disability progression in multiple sclerosis. Dis Markers 2013; 35 (6): 687–99. doi: 10.1155/2013/484959.

9. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (2): 292–302. doi: 10.1002/ana.22366.

10. Tintore M, Rovira À, Río J, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015; 138 (7): 1863–74. doi: 10.1093/brain/awv105.

11. Wattjes MP, Rovira À, Miller D et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11 (10): 597–606. doi: 10.1038/nrneurol.2015.157.

12. Polman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol 2010; 9 (7): 740–50. doi: 10.1016/S1474-4422 (10) 70103-4.

13. Matas E, Bau L, Martínez-Iniesta M, et al. Baseline MxA mRNA expression predicts interferon beta response in multiple sclerosis patients. PLoS One 2014; 9 (11): 366–72. doi: 10.1371/journal.pone.0112758.

14. Bertolotto A, Sala A, Malucchi S, et al. Biological activity of interferon betas in patients with multiple sclerosis is affected by treatment regimen and neutralising antibodies. J Neurol Neurosurg Psychiatry 2004; 75 (9): 1294–9.

15. Hesse D, Sellebjerg F, Sorensen PS. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology 2009; 73 (5): 372–7. doi: 10.1212/WNL.0b013e3181b04c98.

16. Horakova D, Kalincik T, Dolezal O, et al. Early predictors of non-response to interferon in multiple sclerosis. Acta Neurol Scand 2012; 126 (6): 390–7. doi: 10.1111/j.1600-0404.2012.01662.x.

17. Uher T, Horakova D, Kalincik T, et al. Early magnetic resonance imaging predictors of clinical progression after 48 months in clinically isolated syndrome patients treated with intramuscular interferon β-1a. Eur J Neurol 2015; 22 (7): 1113–23. doi: 10.1111/ene.12716.

18. Rio J, Castillo J, Rovira A, et al. Measures in the first year of therapy predict the response to interferon beta in MS. Mult Scler 2009; 15 (7): 848–53. doi: 10.1177/1352458509104591.

19. Sormani MP, Rio J, Tintore M, et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler 2013; 19: 605–12. doi: 10.1177/1352458512460605.

20. Sormani M, Signori A, Stromillo M, et al. Refining response to treatment as defined by the Modified Rio Score. Mult Scler 2013; 19 (9): 1246–7. doi: 10.1177/13524585134 83892.

21. Dimisianos N, Rodi M, Kalavrizioti D, et al. Cytokines as Biomarkers of Treatment Response to IFN β in Relapsing-Remitting Multiple Sclerosis. Mult Scler Int 2014; 14 (6): 436764. doi: 10.1155/2014/436764.

22. Malhotra S, Río J, Urcelay E, et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain 2015; 138 (3): 644–52. doi: 10.1093/brain/awu388.

23. Hecker M, Thamilarasan M, Koczan D, et al. MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int J Mol Sci 2013; 14 (8): 16087–110. doi: 10.3390/ijms140816087.

24. Baranzini SE, Madireddy LR, Cromer A, et al. Prognostic biomarkers of IFNb therapy in multiple sclerosis patients. Mult Scler 2015; 21 (7): 894–904. doi: 10.1177/1352458514555786.

25. Vandenbroeck K, Urcelay E, Comabella M. IFN-beta pharmacogenomics in multiple sclerosis. Pharmacogenomics 2010; 11 (8): 1137–48. doi: 10.2217/pgs.10.108.

26. Hunt D, Kavanagh D, Drummond I, et al Thrombotic microangiopathy associated with interferon beta. N Engl J Med 2014; 370 (13): 1270–1. doi: 10.1056/NEJMc1316118.

27. Vennegoor A, Rispens T, Strijbis EM, et al. Clinical relevance of serum natalizumab concentration and anti-natalizumab antibodies in multiple sclerosis. Mult Scler 2013; 19 (5): 593–600. doi: 10.1177/1352458512460604.

28. Plavina T, Subramanyam M, Bloomgren G, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol 2014; 76 (6): 802–12. doi: 10.1002/ana.24286.

29. Wattjes MP, Wijburg MT, Vennegoor A, et al. Diag- nostic performance of brain MRI in pharmacovigilance of natalizumab-treated MS patients. Mult Scler 2016; 22 (9): 1174–83. doi: 10.1177/1352458515615225.

30. McGuigan C, Craner M, Guadagno J, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry 2016; 87 (2): 117–25. doi: 10.1136/jnnp-2015-311100.

31. Schwab N, Schneider-Hohendorf T, Posevitz V, et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients. Neurology 2013; 81 (10): 865–71. doi: 10.1212/WNL.0b013e3182a 351fb.

32. Schwab N, Schneider-Hohendorf T, Pignolet B, et al. PML risk stratification using anti-JCV antibody index and L-selectin. Mult Scler 2016; 22 (8): 1048–60. doi: 10.1177/1352458515607651.

33. Antoniol C, Stankoff B. Immunological Markers for PML Prediction in MS Patients Treated with Natalizumab. Front Immunol 2015; 5: 668. doi: 10.3389/fimmu.2014.00668.

34. de la Hera B, Urcelay E, Brassat D et al. Natalizu- mab-related anaphylactoid reactions in MS patients are associated with HLA class II alleles. Neurol Neuroimmunol Neuroinflamm 2014; 1 (4): 87–94. doi: 10.1212/NXI. 0000000000000047.

35. Traboulsee A, Simon JH, Stone L, et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016; 37 (3): 394–401. doi: 10.3174/ajnr.A4539.

36. Study Group. Randomized double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis). Lancet 1998; 352 (9139): 1498–504.

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2016 Issue 5

Most read in this issue

This topic is also in:

Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account