Current View on Management of Central Nervous System Low-grade Gliomas


Authors: J. Polívka Jr 1,2;  J. Polívka 3;  V. Rohan 3;  V. Přibáň 4
Authors‘ workplace: Ústav histologie a embryologie, LF UK v Plzni 1;  Biomedicínské centrum, LF UK v Plzni 2;  Neurologická klinika LF UK a FN Plzeň 3;  Neurochirurgická klinika LF UK a FN Plzeň 4
Published in: Cesk Slov Neurol N 2016; 79/112(5): 534-540
Category: Review Article
doi: 10.14735/amcsnn2016534

Overview

The diagnosis of grade II central nervous system glioma (Low-Grade Glioma; LGG) always significantly impacts on the lives of patients, as, despite clear progress in therapy, LGG continues to be an incurable disease. Treatment options include neurosurgical intervention, radiotherapy and chemotherapy. So far, however, no clear criteria have been set to determine the effect of individual treatments, their combinations or their timing. The results of a long-term follow up of the phase III RTOG 9802 trial demonstrated better effect of combined radiotherapy (54 Gy) and chemotherapy (procarbazine, lomustine and vincristine; PCV) treatment in patients with high risk disease (age > 40 years with postoperative radiographic residuum or age ≥ 40 years after any surgical intervention). The question of the role of molecular genetic biomarkers (co-deletion 1p/19q, IDH1/2 mutations and others) in predicting the effects of combined treatment remains unanswered. It is expected that detailed molecular genetic analysis of each tumor will become a part of routine clinical care of patients with gliomas of all stages of malignancy, including LGG. Combined radiotherapy and chemotherapy with PCV following neurosurgical intervention should be the preferred approach to treatment of patients with high-risk LGG.

Key words:
low-grade glioma – chromosomal codeletion 1p/19q – IDH1/2 mutations – personalized medicine

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl) 2007; 114: 97–109.

2. Cohen AL, Colman H. Glioma biology and molecular markers. Cancer Treat Res 2015; 163: 15–30. doi: 10.1007/978-3-319-12048-5_2.

3. Tandon A, Schiff D. Therapeutic decision making in patients with newly diagnosed low grade glioma. Curr Treat Options Oncol 2014; 15 (4): 529–38. doi: 10.1007/s11864-014-0304-6.

4. Wen PY, DeAngelis LM. Chemotherapy for low-grade gliomas: emerging consensus on its benefits. Neurology 2007; 68 (21): 1762–3.

5. Soffietti R, Baumert BG, Bello L, et al. Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force. Eur J Neurol 2010; 17 (9): 1124–33. doi: 10.1111/j.1468-1331.2010.03151.x.

6. Le Rhun E, Taillibert S, Chamberlain MC. Current Management of Adult Diffuse Infiltrative Low Grade Gliomas. Curr Neurol Neurosci Rep 2016; 16 (2): 15. doi: 10.1007/ s11910-015-0615-4.

7. Pallud J, Capelle L, Taillandier L, et al. Prognostic significance of imaging contrast enhancement for WHO grade II gliomas. Neuro Oncol 2009; 11 (2): 176–82. doi: 10.1215/15228517-2008-066.

8. Kim Y-H, Nobusawa S, Mittelbronn M, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol 2010; 177 (6): 2708–14. doi: 10.2353/ajpath.2010.100680.

9. Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol 2014; 16 (1): 103–12. doi: 10.1093/neuonc/not145.

10. Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31 (3): 337–43. doi: 10.1200/JCO.2012.43.2674.

11. Van den Bent MJ, Brandes AA, Taphoorn MJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31 (3): 344–50. doi: 10.1200/JCO.2012.43.2229.

12. Polivka J, Polivka J jr, Repik T, et al. Co-deletion of 1p/19q as Prognostic and Predictive Biomarker for Patients in West Bohemia with Anaplastic Oligodendroglioma. Anticancer Res 2016; 36 (1): 471–6.

13. Polivka J, Polivka J jr., Rohan V, et al. New treatment paradigm for patients with anaplastic oligodendroglial tumors. Anticancer Res 2014; 34 (4): 1587–94.

14. Zhang C, Moore LM, Li X, et al. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro Oncol 2013; 15 (9): 1114–26. doi: 10.1093/neuonc/not087.

15. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (8): 765–73. doi: 10.1056/NEJMoa0808710.

16. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol (Berl) 2009; 118 (4): 469–74. doi: 10.1007/s00401-009-0561-9.

17. Dunn GP, Andronesi OC, Cahill DP. From genomics to the clinic: biological and translational insights of mutant IDH1/2 in glioma. Neurosurg Focus 2013; 34 (2): E2. doi: 10.3171/2012.12.FOCUS12355.

18. Kloosterhof NK, Bralten LBC, Dubbink HJ, et al. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 2011; 12 (1): 83–91. doi: 10.1016/S1470-2045 (10) 70053-X.

19. Polivka J, Polivka J jr, Rohan V, et al. Glioblastoma Multiforme – a Review of Pathogenesis, Biomarkers and Therapeutic Perspectives. Cesk Slov Neurol N 2013; 76/109 (5): 575–83.

20. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39: D945–50. doi: 10.1093/nar/gkq929.

21. Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009; 27 (25): 4150–4. doi: 10.1200/JCO.2009.21.9832.

22. Weller M, Felsberg J, Hartmann C, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27 (34): 5743–50. doi: 10.1200/JCO.2009.23.0805.

23. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897): 1807–12. doi: 10.1126/science.1164382.

24. Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol (Berl) 2010; 120 (6): 707–18. doi: 10.1007/s00401-010-0781-z.

25. Weiler M, Wick W. Molecular predictors of outcome in low-grade glioma. Curr Opin Neurol 2012; 25 (6): 767–73. doi: 10.1097/WCO.0b013e32835a0217.

26. Polivka J, Polivka J jr, Rohan V, et al. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in west bohemia. Biomed Res Int 2014; 2014: 735659. doi: 10.1155/2014/735659.

27. Zou P, Xu H, Chen P, et al. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PloS One 2013; 8 (7): e68782. doi: 10.1371/journal.pone.0068782.

28. Dias-Santagata D, Akhavanfard S, David SS, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med 2010; 2 (5): 146–58. doi: 10.1002/emmm.201000070.

29. MacConaill LE, Campbell CD, Kehoe SM, et al. Profiling critical cancer gene mutations in clinical tumor samples. PloS One 2009; 4 (11): e7887. doi: 10.1371/journal.pone.0007887.

30. Capper D, Weissert S, Balss J, et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol Zurich Switz 2010; 20: 245–54.

31. Takano S, Tian W, Matsuda M, et al. Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 2011; 28 (2): 115–23. doi: 10.1007/s10014-011-0023-7.

32. Andronesi OC, Kim GS, Gerstner E, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 2012; 4 (116): 116ra4. doi: 10.1126/scitranslmed.3002693.

33. Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18 (4): 624–9. doi: 10.1038/nm.2682.

34. Elkhaled A, Jalbert LE, Phillips JJ, et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med 2012; 4 (116): 116ra5. doi: 10.1126/scitranslmed.3002796.

35. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 2015; 372 (26): 2481–98. doi: 10.1056/NEJMoa1402121.

36. Simon M, Hosen I, Gousias K, et al. TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 2015; 17 (1): 45–52. doi: 10.1093/neuonc/nou158.

37. Bettegowda C, Agrawal N, Jiao Y, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011; 333 (6048): 1453–5. doi: 10.1126/science.1210557.

38. Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med 2015; 372 (26): 2499–508. doi: 10.1056/NEJMoa1407279.

39. Suzuki H, Aoki K, Chiba K, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015; 47 (5): 458–68. doi: 10.1038/ng.3273.

40. Reuss DE, Sahm F, Schrimpf D, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol (Berl) 2015; 129 (1): 133–46. doi: 10.1007/s00401-014-1370-3.

41. Weller M, Weber RG, Willscher E, et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol (Berl) 2015; 129 (5): 679–93. doi: 10.1007/s00401-015-1409-0.

42. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl) 2016; 131 (6): 803–20. doi: 10.1007/s00401-016-1545-1.

43. Hollon T, Hervey-Jumper SL, Sagher O, et al. Advances in the Surgical Management of Low-Grade Glioma. Semin Radiat Oncol 2015; 25 (3): 181–8. doi: 10.1016/j.semradonc.2015.02.007.

44. Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008; 26 (8): 1338–45. doi: 10.1200/JCO.2007.13.9337.

45. Jakola AS, Unsgård G, Myrmel KS, et al. Surgical strategy in grade II astrocytoma: a population-based analysis of survival and morbidity with a strategy of early resection as compared to watchful waiting. Acta Neurochir (Wien) 2013; 155 (12): 2227–35. doi: 10.1007/s00701-013-1869-8.

46. Pallud J, Audureau E, Blonski M, et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain J Neurol 2014; 137 (2): 449–62. doi: 10.1093/brain/awt345.

47. Shaw EG, Tatter SB, Lesser GJ, et al. Current controversies in the radiotherapeutic management of adult low-grade glioma. Semin Oncol 2004; 31 (5): 653–8.

48. Kiebert GM, Curran D, Aaronson NK, et al. Quality of life after radiation therapy of cerebral low-grade gliomas of the adult: results of a randomised phase III trial on dose response (EORTC trial 22844). EORTC Radiotherapy Co-operative Group. Eur J Cancer Oxf Engl 1998; 34 (12): 1902–9.

49. Shaw E, Arusell R, Scheithauer B, et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 2002; 20 (9): 2267–76.

50. Kumthekar P, Raizer J, Singh S. Low-grade glioma. Cancer Treat Res 2015; 163: 75–87. doi: 10.1007/978-3-319-12048-5–5.

51. Ichimura K, Narita Y, Hawkins CE. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol (Berl) 2015; 129 (6): 789–808. doi: 10.1007/s00401-015-1439-7.

52. Shaw EG, Wang M, Coons SW, et al. Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol 2012; 30 (25): 3065–70. doi: 10.1200/JCO.2011.35.8598.

53. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus Procarbazine, CCNU, and Vincristine in Low-grade Glioma. N Engl J Med 2016; 374 (14): 1344–55. doi: 10.1056/NEJMoa1500925.

54. Prabhu RS, Won M, Shaw EG, et al. Effect of the addition of chemotherapy to radiotherapy on cognitive function in patients with low-grade glioma: secondary analysis of RTOG 98-02. J Clin Oncol 2014; 32: 535–41. doi: 10.1200/JCO.2013.53.1830.

55. Van den Bent MJ, Afra D, de Witte O, et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomized trial. Lancet 2005; 366 (9490): 985–90.

56. Dropcho EJ. Neurotoxicity of radiation therapy. Neurol Clin 2010; 28 (1): 217–34. doi: 10.1016/j.ncl.2009.09.008.

57. Shaw EG, Berkey B, Coons SW, et al. Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 2008; 109 (5): 835–41. doi: 10.3171/JNS/2008/109/11/0835.

58. Van den Bent MJ. Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma. Neuro Oncol 2014; 16 (12): 1570–4. doi: 10.1093/neuonc/nou297.

59. Vyzula R a kol. Modrá kniha České onkologické společnosti, 22. aktualizace. Brno: Masarykův onkologický ústav 2016.

60. Pignatti F, van den Bent M, Curran D, et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 2002; 20 (8): 2076–84.

61. Cairncross JG, Macdonald DR, Ramsay DA. Aggressive oligodendroglioma: a chemosensitive tumor. Neurosurgery 1992; 31 (1): 78–82.

62. Panageas KS, Iwamoto FM, Cloughesy TF, et al. Initial treatment patterns over time for anaplastic oligodendroglial tumors. Neuro Oncol 2012; 14 (6): 761–7. doi: 10.1093/neuonc/nos065.

63. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10): 987–96.

64. Schaff LR, Lassman AB. Indications for treatment: is observation or chemotherapy alone a reasonable approach in the management of low-grade gliomas? Semin Radiat Oncol 2015; 25 (3): 203–9. doi: 10.1016/j.semradonc.2015.02.008.

65. Lassman AB. Procarbazine, lomustine and vincristine or temozolomide: which is the better regimen? CNS Oncol 2015; 4 (5): 341–6. doi: 10.2217/cns.15.36.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2016 Issue 5

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account